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PREFACE

This research is sponsored by the Defense Advanced Research Projects Agency
(DARPA) and monitored by the U.S. Army Engineering Research and Development Center’s
(ERDC) Topographic Engineering Center (TEC) under contract DACA76-92-C-0008, titled
“Representation, Modeling, and Recognition of Outdoor Scenes.” The DARPA Program
Manager is Mr. George Lukes, and the TEC Contracting Officer’s Representative is Ms.
Lauretta Williams.



REPRESENTATION, MODELING, AND RECOGNITION OF OUTDOOR SCENES

1. OBJECTIVE

The goal in this project was to advance the state-of-the-art in scene modeling and interpretation
for autonomous systems that operate in natural/outdoor terrain. In particular, techniques were
developed for representing knowledge about complex cultural and natural environments so that a
computer vision system can successfully plan, navigate, recognize, and manipulate objects, and
answer questions or make decisions relevant to this knowledge.

2. APPROACH

Advances were integrated in four separate technologies to achieve the goal of providing a
foundation for the design of highly competent machine vision systems capable of autonomous
operation in, and modeling of, the outdoor world.

o Stored knowledge (such as geospatial data and object models, as well as contextual
dependencies and interrelationships) is used to overcome inherent weaknesses in the best
“self-contained” image-analysis algorithms. This approach is reflected in the prior SRI
development of the “CONDOR” and “HUB” systems, and our more recent Automatic
Population of Geospatial Databases (APGD)/“BOS” architecture that relies on context,
function, and purpose, as well as visually-observed geometric shape, to recognize scene
objects.

e Significant progress has been made developing compact and expressive representations for
modeling, and ultimately recognizing, objects encountered in the natural world.
Computational efficiency, thus, real-time performance, is critically dependent on using
effective representations for both reference models and sensed data.

e Global optimization techniques were developed that require reasonable amounts of
computation, but produce results not obtainable by local analysis methods. This work has
been applied to building volumetric models of objects detected in range data and stereo pairs,
as well as for delineation, partitioning, and feature extraction in single images.

e Techniques were developed that are able to simultaneously, or incrementally, exploit
multiple views of a scene in compiling a complete scene model. SRI's previously developed
epi-polar plane image analysis technique and deformable mesh representations are examples
of how multi image collections can be used to construct a geometric scene model that is
superior to a sequence of independent stereo reconstructions.

Some of the key ideas underlying this work are that:

e Models are described by objective functions referenced to some appropriate representation;
feature extraction is accomplished by finding image structures for which the relevant
objective function is optimized. We generally require that the representations we construct
be suitable directly-viewable replacements (with respect to the given interpretation task) for




the original image — but require only a small fraction of the original data storage; finding
such “reduced representations” are an important step in the solution process.

e Recognition-technique selection and corresponding parameter settings are based on context
and confirmed by “built-in” self-evaluation functions.

e We employed a strategy of focusing our development efforts on producing a few highly
refined and reliable “core” techniques as the base for implementing a much broader class of
feature recognition/extraction methods.

Many of the innovative techniques and ideas that SRI has contributed to the image understanding
(IU) program (and to the national machine-vision science and technology base) had their origin
in this program. This includes our early work in developing the context-based vision paradigm
that led to the RADIUS program, the work on model-based optimization, the deformable-mesh
technology, and the linear delineation techniques we transferred to the APGD program (these
techniques are now being transferred to the National Imagery and Mapping Agency (NIMA)
under separate contract).

After completion of the base funding and development period of this contract, efforts were
focused on improving the performance and scope of outdoor scene object recognition techniques.
Work on recognizing complex natural and man-made objects (e.g., roads, trees, rocks, and
terrain features) is based on a set of ideas and techniques being developed for recognizing
complete scene contexts, rather than instances of independent object models. The validity of the
approach has been experimentally demonstrated by recognizing and delineating scene objects
that cannot be dealt with by conventional methods.

Overall, more than 20 papers have been published describing work on this project.
3. ACCOMPLISHMENTS (FINAL REPORTING PERIOD)

In this final phase of the project, the plan was to focus on research enhancements and algorithm
integration to permit testing and technology transfer (especially to DARPA/NIMA-sponsored
programs) of some of the most promising recently developed techniques; this work is described
in greater detail below and in three appendices.

1. Development of a System for Automated Modeling of Linear Structures (especially roads)
in Images of the Earth’s Surface

Work on fully-automated linear delineation in aerial imagery has resulted in what we
believe is the most competent algorithm available for this purpose. This algorithm was
transferred to and installed in the Radius Common Development Environment (RCDE) for
formal evaluation and is now in the process of being transferred to NIMA.

2. Automated Modeling of Natural Scenes

[\



We have developed a set of algorithms for recognizing objects appearing in color
photographs of natural outdoor scenes, and for recovering scene geometry without requiring
camera calibration or stereo correspondence. While this is an ongoing open-ended task, we
can now deal with some recognition problems that had no previously published solutions.

3. Error-Free (Automated) Stereo Matching

An approach has been developed for achieving human-level accuracy in establishing stereo
correspondences. The method still remains to be fully implemented, but essentially error-
free performances have been demonstrated in recent experiments.

4. DEVELOPMENT OF A SYSTEM FOR AUTOMATED MODELING OF LINEAR
STRUCTURES (ESPECIALLY ROADS) IN IMAGES OF THE EARTH'S SURFACE

This seemingly simple task has defied full automation in spite of at least 20 years of effort by a
significant number of competent researchers and applied practitioners. The apparent ease of
human perception with respect to this task masks the nature of the difficulties. Nevertheless, the
techniques developed, largely within this DARPA-supported IU research program, should now
allow us to achieve a productivity increase in road modeling of one to two orders of magnitude
over the currently employed (largely) manual methods.

4.1 Technical Summary: Road Delineation

In a series of papers presented at [U Workshops, work was described on the detection and
extraction of linear features in imaged data: Minimum spanning tree and a novel “network”
structure were used as the primary representations. Semantic constraints control the tree/network
construction, thus, establish the universe of possible paths (both in our data structures and in the
image being analyzed). Characteristics are defined of the linear structures we are looking for as
attributes of the branches in the tree/network, and computationally effective methods are
provided for finding paths that maximize scores for the desired attributes. Filtering techniques,
parameterized by context evaluation procedures (or externally provided information) operate at a
number of decision points in the optimization process, and in final acceptance of the selected
path(s). Specialized experimental versions of the generic delineation technique were
implemented to recognize various types of extended terrain features and navigation obstacles
including the skyline, ridgelines, trees, roads, and paths. The problem of finding linear features
in aerial images has been of special interest, and has resulted in a major advance in automating
the task of modeling roads in the compilation of geospatial databases.

In formal and informal testing on mapping quality aerial images, our completely autonomous
delineation module output is typically 90 to 100 percent correct and 80 to 100 percent complete.'

Appendix 1 presents the results of work directed at the problem of radically reducing the amount
of human effort required to model a road network visible in a collection of images with
overlapping coverage of some geographic extent. The primary goal was to develop and

' Correct = percent of the derived roadmodel that agrees with a human-produced reference model. Complete =
percent of a human-produced reference model include in the derived model.




demonstrate the technology necessary to enable a factor of 100 reduction over 1996 extraction
practice in the time and effort required to produce a road model from aerial and remotely-sensed
images for some reasonably broad class of scenes.

In a February 1999 demonstration, an integrated, end-to-end process was shown that produced a
3-D road network model for the McKenna MOUT area at Ft. Benning (using the same images
employed in the original benchmark extraction that required 280 minutes of manual effort) that
required less than 3 minutes of human effort to edit an automatically produced model -- the
automatically produced model itself was 90 percent complete and had a correctness score of 96
percent.

4.1.1 The Core Problems in Designing an Automated Recognition System

Two generic problems must be addressed in any visually-based recognition task.

Problem redefinition. The basic issue is the requirement to express a typically function-oriented
description of the object of interest in terms of its visual appearance in an image.

One might expect that an analytic or comprehensive definition of the various features of interest
(e.g., roads and buildings) is a necessary first step in the design of the corresponding feature
extraction algorithms/systems. We assert that from a practical standpoint, it is impossible to
provide a comprehensive computational definition of something with instances as geometrically
diverse and complex as a “road” or a “building.”

Dictionary definitions of roads and buildings are primarily concerned with their use, rather than
their geometric structure or appearance. Even if it were possible to provide the desired
definitions, there will always be a significant number of ambiguous cases. For example, at what
point does a road under construction or a very long driveway become a road, or long continuous
shoulders become an extra highway lane? If a small segment of a road is not visible in an image,
should the modeling system fill it in even though it could be due to an actual gap in the
continuous road surface? If a vehicle can easily cross from one road to another adjacent road (say
over an open divider strip), should we insert an intersection at such allocation even though it is
“illegal” to cross over?

A feature extraction algorithm embodies an implied computational definition of the feature it is
intended to model. The algorithm designer usually bases his design on (1) requiring the
visible/measurable presence of certain structures or conditions (e.g., a road must exceed some
minimum length, width, and lie on the earth’s surface); (2) requiring the absence of other
structures or conditions (e.g., a road cannot radically change direction or width very often); and
(3) assumptions about the scene being modeled (e.g., roads in San Francisco can be assumed to
be paved rather than dirt).

The ultimate user of the model probably has in mind a functional (dictionary style) definition of
the features in the model; for example, a road is a physical structure that facilitates the movement
of vehicles, and indeed is used for that purpose. Human image analysts use both types of
definitions, but the key point is that there is no single common definition that can be used as the
ultimate basis for deciding whether a model is correct or incorrect. Even if we adopt the end
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user's definition, we still have the problem that an image taken in isolation is rarely able to
provide all of the information needed to establish if such a definition is (or is not) satisfied. Thus,
the first problem to be solved is to provide a computational redefinition of the nominally given
problem that produces answers consistent with the expectations of a potential user.

Design of a computationally feasible solution for “real-world” problems. Most recognition
problems, treated in their full generality, are computationally intractable; it can easily be shown
that road delineation also has this characteristic. A critical issue in the design of a recognition
system that has acceptable performance on reasonably-sized “real-world” problems is how to
make appropriate tradeoffs between computational complexity and the use of approximations
and/or accepting a limited amount of error. A key aspect of our design was to find a way to
reduce the image information content by more than 2 orders of magnitude in the first major
processing step, while still retaining the information essential to obtain a good approximation to
the desired solution. Another, more practical, measure taken to control the computational
requirement is to restrict all algorithms to be O(nlogn) in their theoretical complexity.

4.1.2 Delineation of Roads and Linear Structures

Because of occlusions and background clutter (i.e., objects appearing in an image that are of no
interest other than that they mimic the objects we are searching for), there is generally no simple
way to partition the image into curves corresponding to coherent line-like objects that are
complete and have no contamination by extraneous background content. If we take a simple
generate-and-test approach, an image with as few as 20 curve points would be computationally
impractical to process because of the factorial growth in the possible number of curves
connecting the points. What is implied by the above considerations is that a single-step solution
is probably not attainable; we must perform a sequence of grouping, filtering, and information-
reduction steps to eliminate unlikely candidates as early in the process as possible, and then
make the final selection on a greatly simplified reduction of the originally presented data.

4.1.3 A Combinatoric-Based Architecture for LD

In general, we must address two subproblems: (1) selecting/partitioning the actual path points
from the set of potential path points, and (2) sequencing the selected path points (see Appendix
2).

To solve the unconstrained delineation problem we must strictly limit the number of points that
can be arbitrarily sequenced, or we must limit the number of choices that are the possible
successors of any given point, or use some combination of the two preceding constraints. We
have observed that we can usually find dense path segments and place perceptual and/or
application-domain-related constraints on linking possibilities for these dense segments. To the
extent that most of the path points are already sequenced as members of the detected segments,
and it is only the segments that must be sequenced, and even here there are only a few linking
alternatives for each of the segments, we can solve the sequencing problem even though it is
formally intractable.

The overall approach is to:



1. Detect potential road points in black/white panchromatic images and construct a binary
representation that retains the perceptually obvious linear structure. This information
reduction step is critical in allowing us to employ very efficient and expressive graph-
theoretic methods to solve the delineation problem.

2. Assemble potential path points into dense segments by using a fast Minimum Spanning Tree
(MST) algorithm (although the MST does not actually assure the densest connectivity, it
usually provides a very good approximation to this condition). Recover the longest smooth
segments -- consistent with generic perceptual connectivity criteria -- which can be extracted
from the forest of trees generated in this step. The input to this step is the binarized image;
the output is a list of disjoint (potential road) segments.

In a typical road delineation problem we started with a 768X638-pixel image (489,984
points) and constructed a binarized version with 55,480 potential road points. As a result of
step 2, we extracted 340 segments containing 21,255 points.

3. Repartition and semantically filter the initial collection of paths to eliminate perceptual and
semantic linking mistakes and irrelevant paths introduced or retained by the limited
flexibility of the MST algorithm/representation and the generic parsing process.

4. Use a recently-developed linking technique and representation schema, capable of expressing
arbitrary perceptual and semantic constraints, to imply a network of paths that is likely to
include the road network to be modeled.

5. Refine the 3-D geometric shape and location of the delineated road segments.

6. Employ contextual and semantic knowledge to produce a final enhancement of the fully
automatic phase of road model construction. Eliminate obvious errors and flag dubious
entries for interactive editing.

Finding roads is decomposed into the problems listed above because the more direct approach of
selecting and evaluating arbitrary paths is computationally infeasible: the combinatorics of
indiscriminant search makes it simpler to first solve the more general problem of finding
(generic) linear structures, and then filtering out roads, than to examine all possible paths in an
image to find the roads directly.

The detection task must address the problem that it is often impossible to distinguish roads from
other natural or man-made structures at a local level. For example, if we look at an image
through a small peephole, objects such as a section of a river, or a parking lot, or the roof of a
rectangular building can all have an appearance similar to that of a small stretch of road. Itis
also the case that tunnels, trees, buildings, clouds, and so forth, can occlude some section of a
road, causing an apparent break in road continuity.

The generic linking must address a number of problems. Given that the detection task is not
error free (i.e., we expect to have both false alarms and misses) the implied connectivity is
ambiguous or possibly incorrect. There also is the computational problem of actually linking the



individually-detected road points into continuous segments and connected networks that
represent the road structures for which we are searching.

Because of possible errors in assumed connectivity, and because roads and other linear structures
may be intermixed at the level of generic linking (e.g., some linked path could be a composite of
a road segment attached to some other non-road object), subsequent steps in the road delineation
process must permit some relinking as well as the recognition of road versus non-road segments
in the networks returned by the generic linker.

Our delineation system as currently implemented has effectively addressed each of the above
problems and is capable of making a major contribution to fully automated road modeling from
aerial images.

5. AUTOMATED MODELING OF NATURAL SCENES

There is a huge hole in the ability to perform the recognition task when the objects of interest
cannot effectively be identified by their explicit geometric shape, or by some directly measurable
attribute (e.g., gross size, color, speed of movement). This means that we cannot deal effectively
with most natural objects and features of the outdoor world -- vegetation, rocks, water, sky, land-
forms, and terrain features.

For some tactical appiications, it may be possible (actually necessary with existing technology)
to focus on the man-made objects of primary interest, and treat the natural objects as background
“noise” rather than as context for helping to understand/model the overall scene; however, for
many other applications (e.g., synthetic environments), we must be able to produce realistic 3-D
reconstructions of these natural backgrounds.

There is typically no need to construct accurate geometric models of (say) the vegetation, but
unless we can identify, at some less detailed level, the visually prominent natural objects, we
have no realistic way of “approximating” their appearance in a rendering of the scene.

The problem of modeling natural scenes was addressed as one of the earlier tasks in this project.
The goal was to be able to take one or more images -- preferably color, and possibly uncalibrated
- and recover the salient natural features and qualitative geometric structure of the actual scene.
The recovered model should look like a realistic rendering composed with some artistic license
[M.A. Fischler, “Robotic Vision: Sketching Natural Scenes,” Proc. ARPA Image Understanding
Workshop, Palm Springs, CA., February 1996]. The most recent focus for this work is discussed
below, where the ability to classify material surfaces is shown to play a critical role in effective
stereo modeling.

5.1  Technical Summary: Modeling Natural Scenes

The goal in this task was to be able -- using completely automatic techniques -- to recognize
natural and (some) man-made objects and terrain features in the context of creating an overall
qualitative scene model or sketch. We are not only interested in recognizing and delineating
isolated objects, but want to describe and exploit their interrelationships. Objects of interest



include grass, brush, trees, rocks, ridgelines/skyline, snow, water, shadows, fences, poles,
holes/ditches, and roads/paths.

To the naive eye, usually, the sky is blue, vegetation green, the earth gray/red/brown, water
blue/green, and so forth. Is it possible to take a real color image, and on a local (or even pixel-
level) basis, produce a “false” color image with a few colors (say 4 t016), each color
corresponding to a specified semantic category, and the false-color image itself a recognizable
replacement for the original -- not only with respect to semantic labels, but also allowing
recovery of gross terrain geometry? If such recoloring is indeed possible, as our experiments
seem to imply, the implications are quite profound. Such an easily-derived explicit
representation (the Color-Sketch) could provide a way for a simple organism (animal or animate
-- without conventional language machinery, higher-level reasoning, or sophisticated
mathematical manipulation) to base immediate (visually-guided) behavior on semantic
considerations.

In attempting to design a vision system for a robotic device (even a vision system limited to
supporting the task of outdoor navigation) and encountering a host of refractory problems, one
cannot help wondering how simple biological organisms can, seemingly, perform this task so
well. While the nominal concern is ultimately to support a full range of interactions of the robot
with its environment, a more achievable initial objective is to consider only those aspects of
visual interpretation required for local navigation. The semantic vocabulary could be as simple as
go/no-go directions open to the robot. It is more important to recognize such functionally
meaningful image-point-attribute distinctions as solid/deformable, flat/raised, close/distant, than
specifically recognizing that something is a tree rather than a rock. Nearby objects should be
given more attention (with respect to positional accuracy and semantic resolution) than distant
ones, which can be dealt with again at a later time if necessary. A subjective (viewer-centered)
model (e.g., an iconic overlay of the image) that can be used for reactive behavior (as noted
above) turns out to be relatively easy to derive as compared to an objective model (e.g., a
symbolic labeling of the partitioned scene) that is required for long-range planning. To the
extent that the sensing modalities are available (e.g., stereo, motion, color, and polarization) they
can pay very high dividends in the simplification of the interpretation task over what can be
accomplished with single black and white images.

The Scene-Sketch has direct utility for reactive robotic navigation since its overlays of the scene
allow the robot to quickly determine the likely presence of raised objects, flat navigable areas,
and surface material in any view direction. This information is available in qualitative form even
without the availability of explicit depth overlays (say, from stereo) or the need for explicit
partitioning. A significant number of pixels with the same semantic or geometric label in a
particular view direction tells the robot what it is likely to encounter if it moves in that direction.
The vertical position (y-coordinate) of the first (smallest y-coordinate) pixel in a coherent
sequence of identically labeled pixels provides an estimate of the distance to the corresponding
object/region.

Since the Scene-Sketch is qualitative, and its vocabulary is limited, its appropriate use beyond
reactive navigation is as input to higher-level analysis processes. For example, since any non-sky
pixel in the color sketch located above the skyline (in the line-sketch) can be assumed to be a



pole or raised vegetation (a tree or a large bush), we can easily extend the semantic vocabulary of
the primitive Scene-Sketch to include these additional objects and detect them with relatively
simple algorithmic techniques. We also can invoke simple rules to check physical consistency,
for example a pixel-labeled water cannot (correctly) lie vertically above a pixel-labeled sky.

6. ERROR-FREE (AUTOMATED) STEREO MATCHING

The key observation here was that many of the assumptions underlying automated stereo
modeling (and useful for conventional aerial mapping) do not hold for ground-level scenes.
Specular reflection from water, glass windows, metallic surfaces, and so forth, violates the usual
assumption of Lambertian reflectance. The nominal assumption that we are dealing with
“mostly” continuous surfaces fail for the sky region and for most vegetated regions (e.g., nearby
tall grass or leaves). The assumption that highly textured surfaces provide reliable match
candidates fails in the case of man-made repetitive textures (e.g., the windows on the wall of a
building) rather than the assumed random textures. Occlusion is a very common, rather than
rare, occurrence and must be explicitly modeled. It is thus apparent that stereo in outdoor
ground-level scenes can be successful only when the surfaces and objects being modeled can be
recognized with respect to a few (~10 to 15) pervasive material categories (including sky, water,
raised vegetation, man-made surface, rock, bare earth, transparent/translucent material). The
categorization does not have to be exhaustive nor exclusive -- we have been able to successfully
apply our previously discussed color-based classification results (as well as employing a new
learning-based classifier developed at Stanford) to meet our needs.

The overall approach was to devise a technique that can find, and *guarantee” the absolute
correctness of the correspondences of, at least a few hundred points in two or more images of
some given scene. It appears that this can be done, at least with an error rate of less than 1 to 2
percent, and we believe we can use the approach recursively in successively narrower matching
contexts to obtain human-level performance in dense stereo matching. Progress on this project
was reported in a paper published in the [UW98 proceedings [ref: J.Z. Wang and M.A. Fischler,
“Visual similarity, judgmental certainty, and stereo correspondence”] and the final test and
evaluation results are included in Appendix 3. It is interesting to note that most of the current
work on urban modeling of buildings is based on using a large number of accurately-registered
images in order to “cancel” out the existence of vegetation and other “problem” surfaces, rather
than including them in the final model. Our approach is to use two or three images and produce
a complete model for the imaged data.

6.1 Technical Summary: Error-Free (Automated) Stereo Matching

Although part of a more general concern for how to recognize the same physical location (or
object) in two or more views of a given (natural) scene, we focused on a “simplest” version of
this problem: how a machine can establish stereo correspondence under conditions similar to
those encountered by the human visual system (HVS) - in particular, from two images acquired
from the same vertically-oriented camera closely positioned at two locations in space and time.
Using the HVS as an existence proof, it appears that “almost perfect™ recovery of qualitative
scene geometry is possible. This appears to imply almost error-free matching of corresponding
points in the two images as required for stereo triangulation, and since we must be capable of



dealing with arbitrarily selected natural scenes, any prior knowledge of the local scene geometry
is ruled out.

We argue that in order to achieve (essentially) error-free performance, a number of deficiencies
in the conventional assumptions and computational approach to (two-image) stereo matching
must be corrected:

1. Itis generally assumed that two image-based projective-geometric reconstructions can be
accomplished solely by appearance-based dense matching under geometric constraints that
establish the epi-polar relationship of the two images. (Eucledian camera models are
preferred, and exploited when available, but do not add an extra dimension to the matching
task -- however, they are necessary for the final recovery of a 3-D Euclidean model of the
scene.)

2. It is almost universally assumed that the scene is mostly composed of continuous (solid)
surfaces with Lambertian reflectance properties.

3. Itis almost universally believed that knowledge and use of scene semantics is neither
necessary nor feasible for stereo matching and geometric reconstruction.

It does not take deep reasoning to see that there are serious problems with all of the above
assumptions. It is somewhat more problematic to provide practical alternatives. We summarize
our contribution with respect to how information from three nominally independent and
informed knowledge sources can be exploited to deal with some of the obvious shortcomings of
the current stereo paradigm.

6.1.1 The Use of Scene Semantics

Images of natural scenes are generally unmatchable over a considerable portion of their extent.
In addition to relative occlusions (between the two images) due to raised objects, we have the
problems of non-Lambertian surfaces (e.g., water, snow, clouds, granite . . .), non-solid surfaces
(e.g., clouds, water, grass, foliage), and transparent media (e.g., sky, water). To the extent that
we can partition natural scenes into a few semantic categories, we can avoid errors due to finding
matches in “unmatchable” regions, or matches between points/surfaces that have different
semantic identities. Even when we are attempting to find matches between locations in the two
images with corresponding semantic partitions, we still gain by not mixing the statistics
associated with the different semantic types.

It is not hard to achieve a useful level of semantic partitioning. Credible results are shown from
fairly simple currently available algorithms operating on colored imagery. The errors are not
serious; they simply reduce the possible number of asserted correct matches -- but we already
know that much of the reconstruction will require some form of interpolation from a core set of
correct (i.e., highly reliable) matches.



6.1.2 An Additional Dimension for Appearance-Based Matching

Conventional stereo-matching techniques can be viewed as representing a point in an image as a
vector composed of the image intensities in a square (surface patch) centered on the given point.
The size of the patch is a tradeoff between a number of factors -- the smaller the size, the better
the resolution of the recovered geometric model, but the more likely the possibility of allowing
an incorrect match. There also is a problem in allowing the size of the patch to become too
large, since the underlying assumption that the patch represents a planar approximation to a
coherent piece of the viewed surface, at a fixed depth, will eventually be violated as the patch
size is increased. Matching is usually accomplished by finding the “most similar” vector in the
conjugate image that satisfies a number of constraints -- especially, that the conjugate point lies
on the epi-polar line of the given point if an epi-polar transform is available.

A critical problem is what do we mean by “most similar.” We need to define a similarity metric
that is invariant to the known artifacts introduced by the imaging process, or remove these
artifacts by appropriately modifying the representation vectors -- in practice, both of these
approaches to removing artifices are employed. There also is the problem that the components
of the representation vector are generally not equally important in establishing correct
correspondence and must be differentially weighted, or their dimensionality reduced to remove
correlated information. A large number of similarity metrics has been proposed for dealing with
the above problems; however, one of three variants of a Euclidean-distance metric in the vector-
representation space is almost universally employed for stereo matching.

The three variants are:
1. The Direct Euclidean-metric (DEM).

2. The Correlation-Metric (CM) which normalizes the DEM for an unknown linear transform
(bias and gain, that is, the mean value and range of intensities) between the intensities of the
two images of the conjugate pair. The CM measures the angle between two vectors as their
similarity score.

3. The Mahalanobis-distance (MD), which eliminates the effect of linearly correlated
information between the components of each vector, and then measures the Euclidean
distance between the resulting vectors.

There is no clear dominance of any one of the above metrics over the others. The CM is most
widely used since it is computationally simple and removes a common source of error (the use of
absolute rather than relative intensities); however, it throws away information that would be
useful if we could be sure it was not contaminated. The MD will provide the most desirable form
of normalization if we can be sure that the sample statistics it uses to compute the normalizations
are not distorted by incorrectly matched conjugate pairs, or by pairs from different semantic
categories with significantly different intervariable correlations.

In our matching formulation, we use the MD and assume each conjugate pair represents two
representative samples drawn from the same distribution, and that all conjugate pairs -- in the
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same semantic partition -- are identically distributed with different means. The covariance
matrix needed for the MD normalization is the average of the matrices for all the matched pairs
in the given semantic category. If we combined all the matched pairs into the computation of a
(single) global covariance matrix, the result would be a less consistent distance metric, and if
there also were incorrect matches, the utility of the MD metric could be lost or even degraded
below that obtainable

from one of the other computationally simpler metrics. We also could remove the global mean
from each vector individually (as in the case of the CM) and compute the combined covariance
matrix for the entire population, but again, it is not clear that this result would be worth the effort
over just using the CM or DEM.

The similarity metric, by itself, does not provide assurance of a correct match. We also must be
certain that there is only one conjugate point that is closely similar to a given point before the
pair is accepted as a correct match. This requirement is usually dealt with in a rather ad-hoc way
in most stereo matching systems; a number of mechanisms have been employed, including the
following:

1. Consider the two top candidates in Image2 as conjugates for a given point in Imagel. Accept
the match only if the difference in similarity scores between the two pairs exceeds some
specified threshold (e.g., 1 or 2 standard deviations in the distance distribution of a given
point from its correct conjugate).

2. Find the point (Q2) in Image? that is the most similar to a given point (Q1) in Imagel.
Accept the pairing only if a search for the point most similar to Q2 in Image!l produces the

point Q1.

3. Only match points that have a high intensity variance over their vector components in the
hope that they will be distinct enough to produce only one potential conjugate (such points
are called “interest points™).

We view the requirement for an effective and principled uniqueness metric as important as the
need for a similarity metric, and in a significant departure from existing stereo matching
methodology, we have introduced such a metric (see Appendix 3). One key difference between
what we propose and the existing adjuncts to the similarity evaluation is that we filter potential
conjugate pairs before they are able to contaminate the statistics required for the similarity metric
to operate effectively. By examining both images for points similar to a given point, we often
find evidence for ambiguity in the image containing the point while such evidence is masked by
occlusion in the conjugate image.

In Appendix 3, we provide a more complete description of our approach and an extensive
tabulation of experimental results to quantify our claim of essentially error-free performance.
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Automated Techniques for Road Network Modeling *

Martin A. Fischler and Aaron J. Heller
Artificial Intelligence Center, SRI International
333 Ravenswood Ave., Menlo Park, CA 94025 USA
E-MAIL: {fischler,heller}@ai.sri.com

Abstract

In this paper, we present the results of work di-
rected at the problem of radically reducing the
amount of human effort required to model a road
network visible in a collection of images with over-
lapping coverage of some geographic extent.

1 Introduction

Our primary goal in the first year of this APGD
task was to develop and demonstrate the technol-
ogy necessary to enable an order of magnitude
(factor of 10) reduction over 1996 extraction prac-
tice in the time and effort required to produce
a road model from aerial and remote-sensed im-
ages for some reasonably broad class of scenes. It
was agreed early in the program that initial efforts
would focus on the Ft. Benning McKenna Mili-
tary Operations in Urban Terrain (MOUT) facility
and surrounding area. This area contains approxi-
mately 20 km of roads over an area of 6.5 km? and
is covered by 44 frames of 1:5000-scale panchro-
matic mapping photography.

The baseline performance benchmark of 280 min-
utes was established by the extraction task for

*This work was sponsored by the Defense Advanced Re-
search Projects Agency under contract NMA100-97-C-1004
monitored by the National Imagery and Mapping Agency,
Reston, VA, and contract DACA76-92-C-0008 Monitored by
The U.S. Army Topographic Engineering Center, Alexandria,
VA. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency, the United
States Government, or SRI International.

the McKenna MOUT area carried out by a
professional cartographer using a digital stereo
photogrammetric workstation (DSPW) running
SocetSet software [Goddard, 1996]. This bench-
mark was part of the 1996 High-Resolution Model
Extraction study sponsored by the US Army Topo-
graphic Engineering Center (USATEC).

In a formal demonstration held at SRI on 22 April
1998, we showed an integrated, end-to-end pro-
cess (Figure 1) that produced a 3-D road network
model for the McKenna MOUT area at Ft. Benning
(using the same images employed in the original
benchmark extraction) that required approximately
25 minutes of human effort to edit an automati-
cally produced model — the automatically produced
model was 86% complete and had a correctness
score of 90%. We also informally demonstrated
the ability of the automated segment of the sys-
tem to model roads visible in five-meter resolution
National Imagery and Mapping Agency (NIMA)
Controlled Image Base (CIB) data.

In the remainder of this report we will describe the
nature of the technical problems we had to address
and the approach we developed to reach our first
year goal.

2 Technical Background

The task of automatically recognizing and extract-
ing a given class of features from unconstrained
aerial images, at anything approaching a human
level of performance, remains an unsolved prob-
lem in general. We have made significant progress
in automatic techniques for recovering scene ge-
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ometry and can automatically recognize objects
that have explicit geometric descriptions. How-
ever, except for the case where a special sensor
measurement is enough to do much of the job (e.g.,
recognizing bodies of water in infrared imagery),
the only approach that works in general is to nar-
row the context to the point that only a few alterna-
tives are possible.

For example, if we are looking for an object that
can be found at a known geographic location, such
as a submarine in a specific pen, then we can usu-
ally determine if the object of interest is present or
not. If the submarine is away from its pen, say vis-
ible on the water surface but disguised to look like
a fishing trawler, we would have very little hope of
finding it using current automated image examina-
tion techniques.

2.1 The Core Problems in Designing an
Automated Recognition System

There are three primary problems that must be ad-
dressed in a visually based recognition task:

1. Problem redefinition. The basic issue here
is the requirement to express a typically function-
oriented description of the object of interest in
terms of its visual appearance in an image.

One might expect that an analytic or comprehen-
sive definition of the various features of interest
(e.g., roads and buildings) is a necessary first step
in the design of the corresponding feature extrac-
tion algorithms/systems. We assert that from a
practical standpoint, it is impossible to provide a
comprehensive computational definition of some-
thing with instances as geometrically diverse and
complex as a “road” or a “building.”

Dictionary definitions of roads and buildings are
primarily concerned with their use, rather than
their geometric structure or appearance. Even if
it were possible to provide the desired definitions,
there will always be a significant number of am-
biguous cases. For example, at what point does
a road under construction or a very long driveway
become a road, or a long continuous shoulder be-
come an extra highway-lane? If a very small seg-
ment of a road is not visible in an image, should

the modeling system fill it in even though it could
be due to an actual gap in the continuous road sur-
face? If a vehicle can easily cross from one road
to another adjacent road (say over an open divider
strip), should we insert an intersection at such a lo-
cation even though it is “illegal” to cross over?

A feature extraction algorithm embodies an im-
plied computational definition of the feature it is
intended to model. The algorithm designer usu-
ally bases his design on (1) requiring the visi-
ble/measurable presence of certain structures or
conditions (e.g., a road must exceed some mini-
mum length, width, and lie on the earth’s surface);
(2) requiring the absence of other structures or con-
ditions (e.g., a road can’t radically change direction
or width very often); and (3) assumptions about the
scene being modeled (e.g., roads in San Francisco
can be assumed to be paved rather than dirt roads).

The ultimate user of the model probably has in
mind a use-based (dictionary style) definition of
the features in the model — e.g., a road is a physical
structure that facilitates the movement of vehicles,
and indeed, is used for that purpose. Human image
analysts use both types of definitions, but the key
point is that there is no single common definition
that can be used as the ultimate basis for deciding
whether a model is correct or incorrect. Even if
we adopt the end user’s definition, we still have the
problem that an image taken in isolation is rarely
able to provides all of information needed to estab-
lish if such a definition is (or is not) satisfied.

Thus, the first problem to be solved is to provide a
computational redefinition of the nominally given
problem that produces answers consistent with the
expectations of a potential user.

2. Design of a computationally feasible solu-
tion for “real world” problems. Most recogni-
tion problems, treated in their full generality, are
computationally intractable; in a following section
we show that road delineation also has this charac-
teristic. A critical issue in the design of a recog-
nition system that has acceptable performance on
reasonably-sized “real world” problems is how to
make appropriate tradeoffs between computational
complexity and the use of approximations and/or
accepting a limited amount of error. A key as-




pect of our design was to find a way to reduce
the image information content by more than two
orders of magnitude in the first major processing
step, while still retaining the information essential
to obtain a good approximation to the desired so-
lution (e.g., see figures 2 and 3). Another, more
practical, measure taken to control the computa-
tional requirement is to restrict all algorithms to be
O(nlogn) or O(n) in their theoretical complexity.

3. Self-evaluation or knowing when you have
the correct answer. A central theme of the
APGD IFD effort is to achieve system robustness
and reliability. An algorithm that is robust and
predictable under narrow but well-understood and
documented conditions is much more valuable as
a system component than a second algorithm that
scores very well in a given benchmark evaluation,
but for which the designer is unable to provide per-
formance charactarizations or guidelines for its use
in different contexts, and which cannot evaluate its
own performance.

The key to robustness is the ability of an algorithm
to know when it has produced a questionable an-
swer (correctness can never be assured). A good
theoretical solution to this problem is still not avail-
able in general, but we have made some important
practical progress in the case of road modeling by
finding sets of constraints on a valid solution that
can be progressively tightened to retain only the
best candidate models. This capability allows us
to select an appropriate “operating point” for the
algorithm; that is, we can trade missed detections
(false negatives) for false alarms (false positives)
depending on system requirements.

2.2 State of the Art

The problem of automatically delineating roads
in aerial images has been under study by com-
puter scientists for over 20 years (e.g., early work
includes [Quam, 1978, Nevatia and Babu, 1978,
Bolles et al., 1979, Fischler et al., 1981]). Nu-
merous algorithms have been developed to date
although almost all the linear delineation algo-
rithms are “trackers” in the sense that they fol-
low a single path. They generally require that they
be given a start point, a direction, and width in-

formation. The main distinction between these
trackers is whether or not they depend on inter-
nal detail: at high resolution, a linear feature,
such as a road, is a ribbon with internal struc-
ture rather than just a thick line. Most track-
ers are variants on two basic themes, sequential
line/edge/intensity-feature followers [Quam, 1978,
McKeown and Denlinger, 1988], or “path-cost”
optimizers [Fischler et al., 1981, Fua and Leclerc,
1990, Iverson, 1997].

The sequential followers search locally for the con-
tinuation of a partially formed track; they can be
very fast and effective in following a clearly vis-
ible, continuous, isolated track, but under more
difficult conditions, they generally have trouble
telling when they have made a mistake, as well as
recovering from a mistake.

The path-cost optimizers come in a number of va-
rieties, but in theory, they are able to select the
least-cost path connecting two specified points in
an image. The cost of a path is typically taken
as the sum of the costs assigned to the individual
pixels traversed by the path and a cost assigned to
local path geometry, curvature for example, or to
some relationship between the attributes of pairs
of successive path pixels. The global optimizers al-
ways do what they are told—produce the lowest cost
solution-but in practice this is not necessarily the
desired answer. For example, when a weakly visi-
ble road parallels a nearby clearly visible one, it is
difficult to delineate the weak road since the tracker
prefers to jump over to the strong road where the
costs are lower.

With the exception of this effort, and earlier work
done at SRI on automated extraction of complete
road networks [Fischler and Wolf, 1983, Fischler,
1994, Fischler, 1997], there are very few systems
(described in the open literature) that can reliably
extract complete road networks from aerial images
without an externally supplied image-specific ini-
tialization or guiding sketch.

In the remainder of this paper we will describe the
specialization of the BOS architecture, under the
control of the road-modeling Feature Extraction
Manager (FEM) to perform the road modeling task
(Figure 1). Five distinct linear-delineation algo-
rithms are invoked: (a) a graph-theoretic network-
delineator to “quickly” extract (global) road net-



Figure 3: Linear structure mask created from Ft. Benning orthomosaic.




work topology from low resolution synoptic 2-
D imagery (e.g., an orthophoto of the complete
site being modeled), (b) a pair of 3-D snaking
algorithms, “cued” by the “sketch” produced by
the road-network-delineator, to refine the the lo-
cal road-geometry and produce a 3-D ribbon us-
ing (when available) multiple high-resolution im-
ages, and in a final editing step (c) a collection of
interactive path-delineators (including a dynamic-
programming path-optimizer and a correlation-
based path-follower) to refine the final result and
produce a product that satisfies application-specific
standards and constraints.

3 System Architecture

The high-level architecture of the system involves
three distinct processes:

Low-resolution road detection and recognition.
A completely automatic process (called LD) that
is capable of accepting even a single aerial image
that is assumed to satisfy a few assumptions and
return a delineation and topological description of
the network of visible roads, which we refer to as
the road centerline model. The result produced
by LD is computed at a nominal ground resolution
of two to eight meters per pixel, regardless of the
availability of higher resolution images.

High-resolution, 3-D refinement and attribu-
tion. When high resolution imagery (less than
1 meters per pixel) is available, the result pro-
duced by LD can be used to “index into” a col-
lection of such images to allow a more detailed,
context-based analysis of questionable decisions
made by LD, more accurate positioning of the road
bed, and determination of road attributes includ-
ing road width, surface material type, along- and
across-road gradient, and so forth. The output of
this fully-automatic process is an attributed road-
network model. (This High Resolution Analysis
process is called HRA.)

[U-assisted interactive editing and review. It
is necessary to provide an editing capability as a
buffer between the special needs of different prac-
tical mapping and scene modeling applications,

and the capabilities of the rather general fully-
automatic processes listed above. The third com-
ponent of the complete system is a highly efficient
interactive editor that is able to employ a signif-
icant inventory of automated tools under human
control.

The entire road modeling system (still in an in-
termediate unoptimized stage of development) can
nominally model 2 km of road per minute in the
fully automatic first two phases, and produce a pro-
fessional level edited product at the rate of 0.5-1.0
km road per minute. It has been implemented as
a layered system on top of the RCDE, a highly-
integrated 3-D cartographic modeling system that
runs on SGI and Sun Microsystems workstations
[Heller and Quam, 1997].

4 Delineation of Roads and Linear
Structures

Because of occlusions and background clutter (i.e.,
objects appearing in an image that are of no inter-
est other than that they mimic the objects we are
searching for), there is generally no simple way
to partition the image into curves corresponding
to coherent line-like objects that are complete and
have no contamination by extraneous background
content. If we take a very simple generate-and-test
approach, an image with as few as 20 curve-points
would be computationally impractical to process
due to the factorial growth in the possible number
of curves connecting the points. What is implied
by the above considerations is that a single-step so-
lution is probably not attainable; we must perform
a sequence of grouping, filtering, and information-
reduction steps to eliminate unlikely candidates as
early in the process as possible, and then make our
final selection on a greatly simplified reduction of
the originally presented data.

4.1 A Combinatorics Based Architecture
for LD

[n general, we must address two sub-problems: (1)
selecting/partitioning the actual path-points from
the set of potential path-points, and (2) sequencing
the selected path-points.

Let us assume that we are given an unordered col-



lection of points that actually constitute the so-
lution (rs). A very reasonable ranking function,
based on the primary Gestalt property of proxim-
ity, is linear density, defined as the number of path-
points per unit path length. This criteria selects
the shortest path that contains all the given points.
What we have just established is that a simplifica-
tion (sub-problem) of our original problem is the
Traveling Salesman Problem (TSP) if the solution
is closed, or the problem of finding a “messen-
ger” (open) path. Both the TSP and the messenger
path problem are known to be computationally in-
tractable for large values of n (NP-complete). For
example, (at least) until recently, the largest value
of n for the solution to a non-contrived TSP was
318 cities.

It is clear that in order to solve the unconstrained
delineation problem we must strictly limit the the
number of points that can be arbitrarily sequenced,
or we must limit the number of choices that are the
possible successors of any given point, or use some
combination of the two preceding constraints. We
have observed that we can usually find very dense
path segments (greater than some minimal length
related to visual detection criterion), and place
perceptual and/or application-domain-related con-
straints on linking possibilities for these dense seg-
ments. To the extent that most of the path-points
are already sequenced as members of the detected
segments, and it is only the segments that must be
sequenced, and even here there are only a few link-
ing alternatives for each of the segments, we can
solve the rs problem even though it is formally in-
tractable.

Our overall approach, as shown in Figure 1 then is:

1. Detect potential road points in black/white
panchromatic images and construct a binary
representation that retains the perceptually
obvious linear structure. This information
reduction step is critical in allowing us to
employ very efficient and expressive graph-
theoretic methods to solve the delineation
problem (see 2 and 3).

2. Assemble potential path-points into dense
segments by using a fast Mimimum Spanning
Tree (MST) algorithm (although the MST
does not actually assure the densest connec-

tivity, it usually provides a very good approxi-
mation to this condition). Recover the longest
smooth segments — consistent with generic
perceptual connectivity criterion — that can be
extracted from the forest of trees generated in
this step. The input to this step is the binarized
image; the output is a list of disjoint (poten-
tial road) segments called RPATHS (see Fig-
ure 4).

In a typical road delineation problem we
started with a 768X638 pixel image (489,984
points) and constructed a binarized version
with 55,480 potential road points. As a re-
sult of step 2, we extracted 340 segments
(RPATHS) containing 21,255 points.

3. Repartition and semantically filter the collec-
tion of RPATHS to eliminate perceptual and
semantic linking mistakes and irrelevant paths
introduced or retained by the limited flexibil-
ity of the MST algorithm/representation and
the generic parsing process.

4. Use a recently developed linking technique
and representation schema, capable of ex-
pressing arbitrary perceptual and semantic
constraints, to imply a network of paths that
is very likely to include the road-network to
be modeled. (see Figure 5).

5. Refine the 3-D geometric shape and location
of the road-bed.

6. Employ contextual and semantic knowledge
to produce a final enhancement of the fully
automatic phase of road-model construction.
Eliminate obvious errors and flag dubious en-
tries for interactive editing.

Finding roads is decomposed into the problems
listed above because, as noted earlier, the more di-
rect approach of selecting and evaluating arbitrary
paths is computationally infeasible: the combina-
torics of indiscriminant search makes it simpler
to first solve the more general problem of finding
(generic) linear structures, and then filter out roads,
than to examine all possible paths in an image to
find the roads directly.

The detection task must address the problem that it
is often impossible to distinguish roads from other
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Figure 4: Disjoint (potential road) segments, called RPATHS.

Figure 5: Final output from the low-resolution road-extraction phase.



natural or man-made structures at a local level. For
example, if we look at an image through a small
peephole, objects such as a section of a river, or
a parking lot, or the roof of a rectangular build-
ing, can all have an appearance similar to that of a
small stretch of road. It is also the case that tunnels,
trees, buildings, clouds, and so forth, can occlude
of some section of a road causing an apparent break
in road continuity.

The generic linking must address a number of
problems problems. Given that the detection task
is not error free (i.e, we expect to have both false
alarms and misses) the implied connectivity is am-
biguous or possibly incorrect. There is also the
computational problem of actually linking the indi-
vidually detected road points into continuous seg-
ments and connected networks that represent the
road structures we are searching for.

Because of possible errors in assumed connectiv-
ity, and because roads and other linear structures
may be intermixed at the level of generic linking
(e.g., some linked path could be a composite of
a road segment attached to some other non-road
object), subsequent steps in the road delineation
process must permit some relinking as well as the
recognition of road versus non-road segments in
the networks returned by the generic linker.

The major components of the low-resolution por-
tion of the LD system are described in greater de-
tail below:

4.2 Detection, Binarization, and Generic
Path Formation

We have examined a number of distinct approaches
to automating the delineation problem including
(a) Dynamic Programming [Fischler et al., 1981,
Iverson, 1997] which is capable of finding a least-
cost path in a real-valued 2-D array (which could
be the original picture, or some derived overlay
called a cost image), and (b) a number of graph-
theoretic techniques which, in practice, require an
early binarization of the input image [Fischler and
Wolf, 1983, Fischler, 1994, Fischler, 1997].

Dynamic Programming (or any other global opti-
mization technique) that can operate on the actual
input data becomes computationally infeasible for

anything other than cost/objective functions that
are very local in nature, i.e, the cost of a path go-
ing through a particular pixel in an image should
only be a function of an attribute list attached to
that pixel and (say) the cost of appending the given
pixel to a path that passes through an adjacent
pixel-rather than being dependent on, for example,
the specific positioning of the previous five pixels
in the curve segment to which attachment is being
considered. Thus, the nominal generality of full
global optimization is not really attainable because
of computational considerations. Even if we could
contend with the computational difficulties, there
is the further problem of actually specifying the
global cost/objective function that approximately
models our perceptual behavior in graylevel im-
ages. This is an even more difficult unsolved prob-
lem.

We have found, through a combination of theory
and experiment [Fischler and Wolf, 1983, Fischler,
1994, Fischler, 1997], that it is possible to auto-
matically construct a binary overlay, of almost any
non-contrived graylevel image, that will retain the
perceptual saliency of the linear structures (paths).
It is further the case that it is now (in the binary im-
age) possible to define the primary cues that under-
lie our perception of a line or path: relative prox-
imity and smoothness of the binary (1 or 0) pixels
defining the line/path. Although not a traditional
Gestalt property, persistence (e.g., coherent path
length) is also a cue of major importance; the other
Gestalt cues play a role only when there is ambigu-
ity due to contending interpretations, or when we
recognize some known shape or repeated structure.

Generic (perceptual rather than application depen-
dent) clustering and linking are effectively (but not
perfectly) achieved by employing a modified MST
algorithm with a bound on interpoint distance. The
MST algorithm we devised for this purpose can be
made to run in time proportional to the number of
points being processed (because the points are rep-
resented by bounded integer coordinates, their den-
sity is not arbitrary).

Thus, the result of the first processing stage in
our road modeling system is a collection of dis-
joint MST’s which can be separately parsed to to
provide a collection of line-segments (RPATHS)
as the final output of the generic linking step .




This parsing process involves (1) finding a pri-
mary path through the tree (typically a diameter
path), (2) trimming back branches with ragged
ends, (3) pruning short branches, (4) partitioning
the remaining collection of branches into disjoint
paths which are pair-wise linked at the MST nodes
according to geometric and (original-image) inten-
sity smoothness criterion. An example showing the
result of this process is presented in Figures 2-4.

4.3 The Semantic Filter (SF)

The purpose of the semantic filter is to extract,
from a collection of perceptually salient paths,
those sub-paths that are compatible with the con-
straints of some specified application or purpose
(in this case, sub-paths that could be road segments
in an aerial image).

This system component takes as its input a list of
generic perceptually-salient paths (RPATHS) and
produces, as its output, a list of path-segments
(RPATHS-F). Each item (called a seg) in RPATHS-
F, is a coherent sub-path of some path in RPATHS;
the segs returned in RPATHS-F are open and non-
self-intersecting, and any pair of segs are disjoint
with the possible exception of a single intersection-
point (as are the paths in RPATHS).

The SF processes each path in RPATHS indepen-
dently. It first partitions the path at it’s salient
points using the algorithm described in [Fischler
and Wolf, 1994]. This partitioning step is neces-
sary to recover components of the application rel-
evant paths that were combined with other (inci-
dental) adjacent paths in the original image. Each
seg produced by the partitioning process is evalu-
ated for compatibility with the constraints of the
intended application on an accept or reject basis.
The accepted segs are appended to the output-list
RPATHS-F.

While in theory, the semantic filter might have to
be completely redesigned for each new application,
we have found that the same set attributes (prop-
erly parameterized for the different applications)
appears adequate for such diverse tasks as find-
ing roads or rivers in aerial images, and for finding
man-made objects (e.g., building edges) or natural
objects (e.g., the skyline, tree-trunks) in ground-
level images.

The attributes we currently evaluate are con-
cemed with length/coherence,  directional-
ity/purposiveness, smoothness, and degree-of-
randomness:

1. Length. Very short segs are typically rejected
as being clutter or unimportant (they can be
recovered later if needed); very long segments
are typically accepted since they are too im-
portant to discard without the further analysis
to be performed later.

2. Directional consistency.  Consistency of
global direction based on a histogram of the
directions between adjacent seg pixels ob-
tained from a chain-coded representation of
the seg.

3. Smoothness. This property is measured in
two ways. First, each seg is inherently smooth
to some degree because its parent in RPATHS
was partitioned into segments at salient (or
high curvature) points. Thus, the length of the
seg is an indirect measure of its smoothness
(the longer the seg, the smoother it is). Sec-
ond, we measure the seg’s deviation from a
best fitting circular-arc to look for a smooth-
ness property that is especially important for
some applications (e.g., finding man-made
objects including roads and streets).

4. Randomness. We have devised a weak mea-
sure of repeated structure (e.g., symmetry), in
a path; this measure together with the evalu-
ation of coherent length, consistent direction,
and smoothness, provide a basis for judging
whether a seg is a “purposeful” or an appar-
ently random structure.

In the example shown in this paper (Figures 2-4)
there were 146 RPATHS containing a total of 9517
pixels. The semantic Road Filter extracted 65 segs
containing a total of 4427 pixels from the given
RPATHS.

5 The Semantic Linker (SL)

The purpose of the semantic linker is to combine
all the segs in the list RPATHS-F (produced by the
Semantic Filter) into a network of unpartitioned



paths. If it were the case that all the components of
a graph (in the mathematical sense) were present,
the design of an efficient linker would still pose
some significant software problems, but conceptu-
ally, would be straight forward. In actuality, the
segments (graph edges) we must assemble into the
“road-graph” frequently have gaps and don’t nec-
essarily extend to their true point of intersection
with other segments. The linker must make “in-
formed” decisions as to how to complete the graph.
(There are other problems to address, including the
aspects of a road-network not covered by graph
theory, e.g., a real-world road intersection can be
a significantly sized area rather than a single point;
or, there can be more than one road linking two
intersections; or, a single edge can have both its
endpoints located at the same intersection. There
are also the problems associated with 3-D intersec-
tions such as highway overpasses.)

The input to SL is RPATHS-F, and its output is
a table defining the road-graph that represents the
topology of the road network. The SL (concep-
tually) examines every pair of segs in RPATHS-F
and determines if they intersect at some point inte-
rior to both segs, or if a small extension of one seg
will intersect the other, or if they can be adjacent
components of an extended path compatible with
the constraints of the specified application. After
all the link decisions have been made, a clustering
operation is used to group the locations, at which
the links between segs have been established, into
the vertices of the graph.

The SL typically uses three types of criteria to
make a link decision for a pair of segs:

1. The relative geometric positioning and sepa-
ration of the segs. For example, in the case
of road delineation, the criterion is typically
a bound on the separation-distance between
nominally corresponding endpoints (one on
each seg).

2. Global attributes of the segs. For example, we
can require that the spectral distribution, or
image intensity, or mean width of the two can-
didate segs be identical to within some speci-
fied tolerance.

3. Acceptance by the semantic filter. If the
two candidate segs are sequentially linked and

treated as a single seg by the semantic filter, is
the combination accepted or rejected.

5.1 The High-Resolution Analysis Phase

As currently implemented, the result from the
semantic linker phase is a 2-D network of 8-
connected pixel chains that correspond to the road
centerlines in a single, low-resolution, image of the
study area. The high-resolution 3-D phase uses this
result to “index into” a collection of overlapping
images. In order to do this, the pixels chains are
projected into object space, by monoplotting the
pixel coordinates against a terrain elevation model
and collecting them into object-space curves. To
reduce the redundancy in the data and remove the
artifacts due to the integer calculations of the pre-
vious stages, the curves are resampled, snaked,
and generalized to derive a piecewise linear, real-
valued, curve that closely approximates the center-
line of the roads in the network.

We then consider the entire collection of high-
resolution images available and for each segment
of each road and build an initial road segment vis-
ibility table that indicates in what images a given
segment should be visible disregarding interobject
occlusions. We then make a second pass through
the table and check if any other already modeled
objects in the scene obscure the segments. This
mechanism is implemented in a very general way,
so that any objects already modeled are checked.

In the case of recent demonstrations using the
Ft. Benning dataset, we are essentially in a cold-
start mode and the only apriori spatial objects we
have are the two terrain elevation models: NIMA
DTED2 that characterizes the topography of the
bare earth and ERIM IFSARE that captures the
shape of the top of the vegetation. This allows
us to check for and remove images from the en-
tries in the road segment visibility table, where that
segment is not visible due to occlusion by the tree
canopy.

Finally, we filter the table based on sensor type,
acquisition geometry, and local contrast and reso-
lution of the image where the segment appears.

At this point, we invoke the SRI Model-Based Op-
timization system on each of the road segments



in the network, using all of the images that have
passed the above tests.

This system has been described in detail in other
papers [Heller et al., 1996, Fua, 1996], but briefly,
it attempts to align the two edges of the road with
high gradients in the images while not deviating
significanly from an apriori geometric model of a
generic rural road (e.g., slowly varying width, no
sharp bends). When operating with multiple im-
ages, as is the case here, the 3-D road model is
projected into each image, the line integral of the
gradients and its partials with respect to the ribbon
parameters is computed; this information is propa-
gated back to the 3-D ribbon, the ribbon is adjusted
and then reprojected into the images. This iterative
process is repeated until no change in the ribbon’s
parameters are made to a maximum of five itera-
tions.

The optimization take place in two phases, first
overall width of each the road in the network is
adjusted in 3 meter steps from 3 to 24 meters. The
width that provides the maximized the line integral
of the gradient is retained. Then the full optimiza-
tion is run, which adjusts the 3-D position, surface
normal, and width of the road at each point along
the road. To prevent corruption of the connectiv-
ity of the network, the junctions (“nodes”) in the
road network are constrained to their initial loca-
tions and not adjusted during the optimization. The
full result of this phase is shown in Figure 6.

Experiments have shown that using more than four
or five images for each road does not provide sig-
nificant improvement and in some cases can de-
grades performance. Therefore it is important
be discriminating and choose a few good images
rather than a large number of poorer ones. It is this
observation that motivated the development of the
extensive filtering described above.

6 Evaluation Rationale and Metrics

We assume that the computer cost and time re-
quired to run a typical feature extraction algorithm
on an image will continue to decrease, and will be
insignificant within a five to ten year time frame.
Thus, in a practical setting, assuming that the com-
puter time needed is not excessive (i.e., many times
longer that doing the job manually), the cost of au-

tomation largely amounts to the time spent fixing
the errors and short-commings of the automated
process.

Our primary practical concern is in reducing hu-
man interaction time. Hence our primary bench-
mark evaluation metric focuses on this quantity,
human interaction time. Nevertheless, from both
a scientific and long-range practical perspective,
measuring progress toward a fully-automated fea-
ture extraction capability is also an item of ma-
jor concern and we separately evaluate the per-
formance (with respect to running time, complete-
ness, and correctness) of the fully-automated com-
ponent of our system.

The goal of the evaluation we present later in
this document is to quantify the performance (in
terms of human-interaction-time, correctness, and
completeness), of our overall system and its au-
tomated component, to recover a road-centerline
data-model for the Ft Benning McKenna MOUT
facility and surrounding area.

A Reference Road-Centerline Data-Model in-
cludes the specification of a collection of
Reference-Road-Segments (RRS). Each such road-
segment is an ordered list of geo-referenced 3-
D coordinates representing a sampling of points
along the centerline of a road-segment; the road-
segment-centerline is assumed to be a continuous
path in 3-D space, and the gaps between sample
points are straight-line (in a cartesian system) ex-
tents of the segment-centerline.

Given that there are road-like entities in an im-
age that are ambiguous over some portion (or all)
of their extent, with respect to their classification
(e.g., a long dirt road that gets continuously nar-
rower until it finally disappears; the point at which
the road changes into a path is ambiguous), two
different cartographers, using their best judgment,
might assign different labels to (portions of) such
objects. For this and other reasons, the Reference-
Model (RM) can include Don 't-Evaluate volumes,
regions, or segments. In essence, these are portions
of the scene which are excluded from the evalua-
tion.

The Road-Centerline Data-Model includes a list
of nodes (3-D spatial locations) denoting the loca-
tions at which the RRS intersect. This information
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describes the Reference-Road-Graph topology.

The Road-Centerline Data-Model includes a col-
lection of attributes for each RRS, including
number-of-traffic-lanes, minimum-useable-width,
surface-material-type, etc.

6.1 The Evaluation Process

The evaluation metrics (correctness and complete-
ness) are based upon the following definitions and
tabulated quantities:

Reference Model An object space model gener-
ally recognized as representing the “correct”
answer for the feature extraction task under
evaluation.

Derived Model An object space model created by
the algorithm or system under evaluation.

True Positives (TP) Length of road that, within
a specified tolerance, is common to both the
Derived and Reference Models.

False Positives (FP) Length of road that appears
in the Derived Model but not in the Reference
— even when we dialate the reference to in-
clude all derived road-segments within some
tolerance area or volume around the Refer-
ence segment.

False Negatives (FN) Length of road that appears
in Reference but not in the Derived Model —
even when we dialate the Derived Model to
include all Reference-segments within some
tolerance area or volume around the Derived
segment.

Explicit algorithmic definitions of the above quan-
tities are provided in a separate paper in this vol-
ume [Fischler and Bolles, 1998].

From these tabulated quantities, the following met-
rics are calculated.

Completeness: The percentage of a specified
class of objects included in the reference
model that also appear in the derived model.
This metric corresponds to what has also been

called “detection percentage:”

TP
100 X =
* (TP+FN) M

It has a range from 0-100% (a large value is
good).

Correctness: The percentage of some specified
class of objects included in the Derived model
that are also included in the Reference model.

TP

It has a range from 0-100% (a large value is
good).

7 System Performance

The formal Yearl Road Modeling demonstration
was presented at SRI on 22 April 1998.

The reference benchmark timing result, a road
model (with some minor errors) of the Ft. Ben-
ning MOUT site produced by a professional car-
tographer was 279 minutes. Our goal in this Yearl
demonstration was to use our computer system to
model the same site in an order of magnitude less
time for the needed human interaction in a final
editing step (computer time was recorded as part
of the experimental record, but did not enter into
the evaluation).

The automatic road extraction process (the low-
resolution process followed by the 3-D multi-
image refinement process) took approximately 10
minutes of computer time on an SGI R10000 O2.
(We later ran the same analysis on a newer machine
(a SUN Ultra30) and it only took 5 minutes.)

The evaluation of the automatic road extraction re-
sults were as follows:

Correctness: 90% Completeness: 86%
Afier interactive editing, these scores increased to:
Correctness: 98% Completeness: 93%

We have run the editing process 3 times for timing
purposes. The human interaction time varied from
22 to 25 minutes, always under our goal of 27.9
minutes.



8 Current Status and Future Plans

Our effort to design a baseline linear delineation
(LD) system as part of the BOS architecture, and
to integrate it into to the RCDE system for eval-
uation and testing is complete [Fischler et al.,
1998]. In addition to the interactive “Snake”
and correlation-tracking algorithms already resi-
dent within the RCDE, we have selected com-
ponents from the SRI low-resolution generic-LD-
research-system and reimplemented the code as
needed for RCDE compatibility.

We also made a number of modifications to the
LD code to enable processing of the large images
typically encountered in cartography and intelli-
gence applications. Our current implementation
can demonstrate a significant advance over previ-
ous state-of-the-art performance in fully automated
road modeling. Current on-going work involves
putting the road modeling system under complete
CBACS supervision to exploit contextual informa-
tion, adding additional components to deal with
urban streets, and extending the core algorithm to
exploit the information available across a range of
scales of resolution.

We believe we have developed one of the best and
most complete collections of algorithms for lin-
ear delineation available anywhere in the world.
Nevertheless, to achieve the ultimate goal of
completely automated robust delineation of roads
(streets, etc.) appearing in aerial images, we must
solve some additional problems.

Self-evaluation. The most important problem
we face in assembling a fully automated road de-
lineation system, which has little or no need for fi-
nal human editing, is to eliminate errors (either of
omission or commission) that would lead a naive
user of the product to question its credibility. The
system cannot afford to miss a road that any human
observer can easily detect, or to insert a road that
obviously isn’t present. This means that the system
must be capable of a high degree of self-evaluation
— it must be able to access and employ enough con-
text to be very sure of the answers it produces (at
least) in obvious situations.

Operation in complex scenes. In complex envi-
ronments, such as in urban scenes, streets, build-
ings, and trees form a minimal contextual unit. A
delineation system for streets has no hope of ob-
taining reasonable performance unless it also un-
derstands” buildings and trees, and how they “in-
teract” with streets. The idea of a simple stand-
alone algorithm to perform a complex recognition
task is not viable. Our current approach to struc-
turing the APGD task within the framework of a
context-based architecture is still in an early state
of development, but the ultimate success of our
efforts will depend on easy and effective access
(by the feature extraction algorithms) to high-level
contextual and semantic knowledge.

A Assumptions for Simple/Rural Road
Delineation

The imaged roads are perceptually detectable in
an available (possibly reduced resolution) single
synoptic view, with no special effort or detailed
study, as smoothly curving line-like objects with
no internal detail. The roads are purposive as
transportation-links; they have direction consis-
tency, tend to follow elevation contours and have
switch-backs only in steep terrain. Rural roads lie
on the earth’s surface, have few major intersections
(or small closed circuits), and are uncorrelated with
other nearby man-made structures, including other
roads.

Acceptable resolution: The image, or a reduced
resolution version of the image, depicts the
roads with an width of two to five pixels.

Good contrast: The roads appear dark or light
against the background.

Good visibility: The roads are mostly unoc-
cluded.
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Automated Road
Modeling:
Constructing the Road
Graph

Martin A. Fischler
March 5, 1999

1 Introduction

This document describes an algorithm
that derives an explicit 2-D graph from
a collection of line (road) segments. For
the purposes of road modeling, the line
segments are assumed to be the center-
lines of road-segments detected in aerial
imagery with a ground surface resolution
in the range of 2-10 meters per pixel - i.e.,
a resolution range in which the internal
road structure is not visible and the roads
appear as thin lines; if necessary, the orig-
inal image resolution is reduced to obtain
this condition. The data model for the
derived graph makes explicit both the ge-
ometry and topology of the road-network
being modeled.

In [Fischler and Heller, 1998], we de-
scribed a complete system for modeling
the 3-D geometry and various physical at-
tributes of the network of roads appearing
in a collection aerial images of some spec-
ified geographic area. The system block-
diagram (Figure 1) shows a sequence of
steps leading to the block entitled Net-
work Linker — actually the semantic net-
work linker SNL; this is the component
of the system we are primarily concerned
with here. It will be assumed that, in gen-
eral, there will be some errors in the list of
segments (called *road-segs*) provided as

input to the SNL. In particular, because
of occlusions or lack of adequate contrast,
the segments provided as input may be
shortened (e.g., do not extend to their
actual intersection points with other seg-
ments); may be incorrectly partitioned be-
cause of the loss of an interior subsegment;
or may be missing altogether. Thus, the
SNL must make ”informed” decisions as
to how to complete the graph in the ab-
sence of complete information.

There may be non-road structures (e.g., a
river) in *road-segs* that managed to pass
through the earlier filtering processes, and
we must also address those aspects of
an actual road-network that are not cov-
ered by graph theory, e.g., a real-world
road intersection can be a significantly
sized area rather than a single point; or,
there can be more than one road seg-
ment linking two intersections; or, a single
segment can have both its endpoints lo-
cated at the same intersection. Because of
these and other problems, the SNL must
be able to exploit context and seman-
tic knowledge relevant to road construc-
tion/formation,! rather than just making
explicit the generic connectivity relation-
ships inherent in the given data (indepen-
dent of the problem domain).

2 Algorithm Architecture

A basic function of the Semantic Net-
work Linker is to describe the explicit
(literal) topology of the graph formed by
the individual segs in the list *road-segs*
(produced by the Semantic Filter). In
this most primitive version of the link-
ing operation, the SNL performs a purely
passive and syntactic (problem-domain-
independent) operation — it constructs the

!Existing terrain features can be used as roads;
e.g., a dry river-bed or wash
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data-structure called *vertex-table* that
identifies the points of intersection of the
members of *road-segs*; and also cata-
logues in *vertex-table* (as degree-1 ver-
tices) the unlinked endpoints of the mem-
bers of *road-segs*.

In actuality, because *road-segs* almost
always contains omission errors due to oc-
clusions and areas of very low contrast,
the most critical function of the SNL is
to deduce the presence of vertices (road
intersections) implied by, but not explic-
itly present, in the basic syntactic anal-
ysis. This deductive process is based on
both generic perceptual cues and also on
the semantics of road-network construc-
tion/formation.

We note that at a resolution where roads
are lines with no obvious width, vertices
(intersection points) have no independent
visible presence, they are an artifact of the
intersection of two (or more) roads. Since
vertices are ephemeral in the above sense,
they are always computed from a collec-
tion of road-segs called *road-segs2*; the
SNL constructs *road-segs2* from *road-
segs* by adding new segs to this basic
collection. These new segs are the de-
duced completions of the initial (input)
road-graph and are typically confirmed by
visible evidence in a directed search of the
original image or the derived MASK.

The SNL performs the following sequence
of operations:

1. The SNL considers all concatenated
pairs of segments that can be formed
from the entries in *road-segs* and
determines if each such resulting
path satisfies a collection of percep-
tual and semantic conditions on line-
appearance and road formation. All
such accepted pairs are listed in a

data structure called *link-pairs*

2. The connectivity information pro-
vided by *link-pairs* allows the SNL
to perform a directed search for ad-
ditional line segments whose pres-
ence would result in a simpler road-
graph (e.g., fewer vertices). These
additional segments, that fill “gaps”
in the unaugmented graph implied
by *road-segs*, are currently found
by a more tolerant localized search
in the MASK that produced *road-
segs*, but they could also be provided
by other means (e.g., going back to
the intensity information in the orig-
inal image, or even a second image of
the same site). This “filling-in” op-
eration is very conservative; if there
is more than a single obvious choice,
no action is taken. The result of the
directed search is an augmented set
of road-segments called *road-segs2*
and a correspondingly more complete
set of *link-pairs*. A set of syntactic
operations performed on these data
structures results in the formation
of the data structure called *vertex-
table* which defines (the current ver-
sion of) the desired Road-Graph.

3. Given the additional context pro-
vided by the first compilation of a
road-graph for the given site, we can
now apply additional semantic rules
that are applicable (only) when a
road-graph is available. E.G., in a
“large-enough” synaptic view of the
site being modeled, (by definition?)
all roads form a single connected net-
work. Thus, small isolated com-
ponents of the initial graph can be
deleted. This, in turn, reduces the
combinatorics for a more extensive

2Section 6 contains definitions of important
terms and symbols.



search for missed connections in the
retained (valid) portion of the road-
graph. In particular, we perform a
focused search for extensions of road-
segments that terminate in degree-1
vertices. Now, rather than requiring
positive evidence for a reasonable ex-
tension to fill a gap, we can use lack of
negative evidence to take this action.
The net result of the above strategy is
an iterative boot-strapping enhance-
ment of the road-graph by 2 or 3
repeated applications of the (same)
SNL algorithm - in each repetition,
the road-graph becomes simpler and
more completely connected.

3 Algorithm Description

The input to SNL is *road-segs*, and
its output is *road-segs2* and the ta-
ble *vertex-table* defining the road-graph
that represents the topology of the road
network. The SNL (conceptually) exam-
ines every pair of segs in *road-segs* and
determines if they intersect at some point
common to both segs, or if a small exten-
sion of one seg will intersect the other, or if
they can be sequential components of an
extended path compatible with the con-
straints of the specified application. After
all the link decisions have been made, a
clustering operation is used to group the
locations, at which the links between segs
have been established, into the vertices of
the graph.

The SNL uses three types of criteria to
make a link decision for a pair of segs
(corresponding to the Gestalt criterion of
proximity and good-continuation):

1. The relative geometric positioning
and separation of the segs. This cri-
terion is expressed as a bound on

the join-angle and on the separation-
distance between nominally corre-
sponding endpoints (one on each seg).
This test provides a necessary but not
sufficient condition for the presence
of a new link-segment unless the sep-
aration distance is less than the tol-
erance for the positioning of an in-
tersection (5 pixels or 25 meters). In
the later case it is not necessary to
add a new segment to *road-segs2*,
the intersection will be noted by the
SNL and a corresponding vertex will
be added to *vertex-table*.

2. The actual presence of a visible link
that was not captured or retained in
*road-segs*.  Given two segment-
endpoints in close proximity, we iden-
tify a window in MASK contain-
ing both these vertices and using a
single-path finding algorithm (the al-
gorithm “F*” described in [Fischler
et al., 1981]) determine if an accept-
ably dense path actually exists be-
tween the given vertices - if so, it is
appended to the list *road-segs2*.

3. Acceptance by the Semantic Filter
(figure 1). The two candidate segs are
sequentially linked (the gap between
their endpoints filled by a straight-
line?) and treated as a single seg
by the semantic filter; if the com-
bination is accepted, the straight-
line-connector is appended to the list
*road-segs2*.

3.1 Directed Search for
Road-Graph Completion

In attempting to produce a complete road-
graph, beyond the explicit data provided

3A spline could be used, but for small gaps,
the extra complexity is not justified



in *road-segs*, the SNL must make some
“informed” decisions (based on context
and semantic knowledge) about how large
a gap in the network can be filled without
direct evidence; and from a computational
standpoint, there is the problem of how
big an area to search for a potential con-
tinuation of a terminated road-segment.
Because of the way *road-segs* was cre-
ated, and because of the combinatorics in-
volved, all extensions to *road-segs* are
required to include the end-point of at
least one segment in *road-segs*. Given
such an endpoint, the SNL performs four
types of search for a continuation:

e An area search (for another segment
endpoint) centered on the given end-
point, with a diameter between 50-
150m (10-30 pixels). The lower-limit
of the search dimensions is based, in-
part, on the definition of a road given
in section 6; the upper limit is based
on the combinatorics involved. A
link-segment is added to *road-segs*
if there is evidence (i.e., a sufficiently
dense path) in MASK that a road
is actually present. However, if the
two endpoints involved are degree-
1 vertices of the current road-graph,
and the associated segments pass the
test for “good-continuation,” a link-
segment joining them is added to
*road-segs* without further evidence.

e An area search for any portion of an-
other segment within 5-10m of the
given endpoint based on the defini-
tion of a road given in section 6.
If found, a link-segment is added to
*road-segs* without any further ver-
ification required.

e If the given endpoint is a degree-
1 vertex of the current road-graph,
a 100m-long search along a straight

line extrapolation of the tangent to
the corresponding segment is made
for an intersection with any portion
of another segment. If ezactly one
such intersection is found (called a
“T-intersection”), a link-segment is
added to *road-segs* without further
verification. = We note that if the
length of the search path is increased,
there is a higher probability of find-
ing more than one intersection along
the path, and thus, we might actually
lower rather than increase the prob-
ability of adding a new link-segment
to the road-graph.

o If the given endpoint is a degree-1
vertex of the current road-graph, a
focused search for another vertex of
the road-graph is conducted in a nar-
row rectangular region whose axis is
the straight line extrapolation of the
tangent to the given segment. The
length of this search is set by the lo-
cal context, but is generally in the
range of 30-60 pixels. A link-segment
joining the two endpoints, is added to
*road-segs* if there is a sufficiently
dense path between these endpoints
(in MASK) to verify that a road is ac-
tually present. If more than one ver-
tex is found in the search-area, only
the closest one is considered. The use
of this search procedure is the main
feature that distinguishes the “aug-
mented” from the basic-SNL.

3.2 Implementation

The complete algorithm depicted in the
Block-Diagram (figure 1) has been imple-
mented in Common-Lisp and runs on a
low-end Silicon-Graphics or Sun worksta-




tion. The 665 x 365 ALV-image,* dis-
cussed in a following section, required less
than three minutes of computer process-
ing for the system to produce the com-
pletely linked low-resolution road model
(output by the SNL). The SNL run-time
was one minute.

A key implementation requirement is that
the modeling system (except during devel-
opment) should be able to run on images
of arbitrary size — we have run successful
experiments on images as large as 20,000
x 20,000 pixels. To achieve this goal, we
restricted the algorithms to (nominally)
linear, but no worse than nlogn computa-
tional complexity. Images are stored and
processed as partitioned blocks. All in-
teractions are assumed to occur between
entities that have some known maximum
spatial separation, and thus, higher-level
derived quantities can also be stored in
cells such that only a few cells ever have
to be considered for any given computa-
tion.

4 Algorithm Performance

The SNL’s main responsibility is to re-
cover the underlying topology of the road-
graph implied by the list of road segments
(*road-segs*) provided as input. Side ef-
fects of the operations performed by the
SNL include “filling-in” of some of the
small gaps in the input, and elimination of
(nominally) non-road-segments detected
by their isolation from the main body of
the final road-graph.

The algorithm is expected to correctly re-
cover the connectivity relations explicit in
the input, and make human-level judg-
ments for the implicit connections - given
that such a representative human has no

4alv-2-44-full.gl UTM-window:
(1743 3329)); 2m per pixel

((413 2599)

additional sources of information beyond
the given input (*road-segs*). We also as-
sume (for the current version of the al-
gorithm) that we are dealing with rural
scenes in which the roads are relatively
uncorrelated with each other, have rela-
tively few intersections, and occupy less
than (nominally) 1/50th of the image.

Figures (2) and (3) show the syntactic per-
formance (explicit recovery) of the SNL
given a complete grid. The grid is a dif-
ficult test case for the SNL which cur-
rently assumes a rural setting. The given
grid has a line and intersection density
of approximately 10 times that expected;
never the less, the recovered geometry and
topology are correct. The algorithm prop-
erly identified the actual intersections and
did not introduce any incorrect links. In
figures (4) through (6) we observe the
conservative behavior of the rural-SNL in
a complex environment — it did not in-
troduce any incorrect links, but a num-
ber of links that were very reasonable ex-
trapolations of the given data were omit-
ted. In figure (7), we augmented the SNL
with an experimental module® being de-
signed for urban environments — here the
results are more complete. A correct an-
swer (i.e., that produced by most people
given the image and the information that
the grid is an actual street-pattern and is
not necessarily complete) would probably
be very similar to that produced by the
augmented-SNL. Figures (8) through (11)
show the performance of the algorithm on
an aerial image.

Neither the basic nor the augmented SNL
has any explicit knowledge of straight
lines or grids at present, but such knowl-
edge is valuable in modeling urban streets
and it will be added to the augmented

5The command sequence used was (get-road-
model test-imagel) (citi-link *road-segs*)



SNL in the near future. The basic SNL
is the unaltered module, with no parame-
ter changes, that has been used in all our

benchmark tests and related demonstra-
tions [Fischler and Heller, 1998].

Figures (12) through (20) show a rural
mountainous environment (with some in-
dustrial roads® and buildings) that is more
representative of the type of contextual
setting the algorithm expects. The perfor-
mance of the SNL-algorithm’ here is very
close to what a human would produce over
most of the scene (even though there are
some minor errors in the upper-left cor-
ner) - especially if the human did not see
the original image (figure 12), but only the
input® provided to the SNL (figure 18).

5 Discussion

A key problem we face in trying to du-
plicate human performance in deriving a
road model from imagery is having some
way to determine if a proposed model
(or model-component) is “correct.” At
present, this problem is unsolved with-
out recourse to either human interven-
tion, or to information beyond that di-
rectly available from the imagery. On the
other hand, there are many fairly reliable
ways to determine if a small road-model
component (especially, an isolated road
segment) is likely to be incorrect. Our
approach, therefore, has been to gener-

8A few of the wide roads in the industrial area
are not found at the given resolution. A second
pass at a lower resolution is needed to complete
the delineation.

"The command sequence used to produce
figure (20) is (get-road-model :max-ratio .20)
(extended-linkerx :long-rpaths 120) (delete-small-
network-components :th 400) (delete-spurs :th
75).

8The basic SNL does look at the MASK when
trying to confirm a hypothesized link, and the
extended-linker also looks at *rpaths*

ate a collection of small feasible compo-
nents, filter-out the unlikely candidates,
and then link the survivors into larger con-
nected components. The main character-
istic we exploit in this process is that of
road-network coherence. If we can find a
model whose component parts are inde-
pendently likely to be correct, and whose
connectivity satisfies a set of criterion that
is also consistent with road-model con-
struction/formation constraints, then the
larger the size of a candidate road-model
component, the more likely it is to be cor-
rect.

We identify the following essential pro-
cesses:

e Detection of locations in an im-
age where there is evidence of linear
structure. A very effective algorithm
for this purpose (described in [Fis-
chler and Wolf, 1987]) is the basis for
our construction of the the binary im-
age overlay MASK.

¢ Sequencing of line-point locations
(in MASK) into line-segments. We
define sequencing as a linking opera-
tion in which there is only one rea-
sonable simple 2-D curve that con-
tains the given points. This is ac-
complished by parsing a Minimum
Spanning Tree into a collection of
line segments called *rpaths* (Refer-
ence [Fischler and Wolf, 1987]).

o Filtering. Elimination of line seg-
ments in *rpaths* that do not satisfy
the geometrical (and possibly other)
attributes of a road segment. The col-
lection of segments that survive this
process are called *road-segs*.

e Linking. The construction of a com-
plete (road) network from the collec-
tion of segments in *road-segs*. A




discussion of some of the underlying
theory is presented in [Fischler, 1997].

We deal with the combinatorics of the
linking process by only considering two
segments at a time to form an initial set of
“join-candidates.” This initial set of can-
didates (*link-pairs*) implies a set of ver-
tices of possibly high degree. The implied
vertices are now examined individually,
and those that do not pass a set of tests
(no vertex can be more than 5-pixels/25-
meters in diameter; that is, all the line seg-
ments associated with a given vertex must
terminate within a circle 5-pixels in diam-
eter; no vertex can contain both ends of
the same segment unless the segment is at
least 5-pixel long) are modified by either
removing the links to a segment that fails
the vertex membership criterion, or find-
ing additional evidence that a segment ex-
tends to an explicit intersection with other
vertex segments, or by splitting the vertex
into two or more simpler ones (this opera-
tion is actually accomplished by removing
links joining some of the original segments
associated with the vertex).

The set of rules that are invoked to deter-
mine whether two segments (both mem-
bers of *road-segs*) should be linked is
based on the requirement that two seg-
ments can only be linked at their end-
points unless there is an actual interior
point of intersection. We also search
for “T-intersections,” locations where one
segment endpoint appears to intersect an
interior point of a second segment. In this
case, we split the second segment at the
implied vertex and add the implied (short)
linking segment to *road-segs2*.

A key idea in all the above is that we
only make a change to the existing net-
work in a few recognized predefined (rel-
atively simple) situations. Complex link-

ing situations do not have to be explic-
itly identified and understood by the SNL,
they are resolved through an iterative se-
quence of more primitive simplifications.
The linking algorithms are designed to
produce an improved (or neutral) result
no matter how often they are recursively
applied. A second reason for this conser-
vative approach is related to our strategy
for integrating models (for the same site)
computed at different resolutions, or over
different images, or even from non-image
information (e.g., existing maps).

An arbitrary aerial image of some speci-
fied site will typically not provide visual
access to all the roads in the area — differ-
ent viewpoints, and possibly images ac-
quired at different times or even seasons
may be required. Further, the visibility
and detailed appearance of roads (as well
as other features) changes as the resolu-
tion is varied. To compile a complete and
accurate road model we must assume that
an effective multi-source integration strat-
egy is available. Statistical methods, nor-
mally used for multi-source integration,
are not suitable for modeling the natural
(unconstrained) outdoor world. However,
if we can assume that our various mod-
els are reasonably close to being error-
free, and we can project them into the
same geographic coordinate-frame, then
a superposition of models is a valid in-
tegration strategy. This is the approach
we have taken. The requirement then is
that we run our algorithms at a point of
the ROC curve that produces the highest
obtainable correctness at the expense of
completeness — and we regain complete-
ness by multi-source integration. We have
found that even if we only have a single
high-resolution image of a site, this inte-
gration strategy (using conservatively pro-
duced multi-resolution road-models) gives



much better results than any other feasi-
ble alternative tied so far.

In formal and informal testing [Fischler
and Heller, 1998] on mapping quality
aerial images, the SNL produced result is
typically 90-100 percent correct and 80-
100 percent complete.®

6 Definitions

Road The problems of defining a “road”
in terms of its visual appearance, and
of distinguishing between different
classes of road-like objects, are dis-
cussed in [Fischler and Heller, 1998].
For our purposes in this document,
we assume that roads form an infi-
nite network, only part of which is
present (but not always completely
visible) in any given image. A com-
pletely isolated “road-like” object is
not a road. A “spur,” (e.g., a drive-
way) is considered to be a road if it is
at least 300m (60 pixels) long. Two
roads which parallel each-other at a
separation distance of less than 50m
(10 pixels) cause an ambiguous situ-
ation in which they may be merged
into a single road segment. Similarly,
if any pair of points, one on each of
two road segments, are separated by
less then 50m (10 pixels), they may
be assumed to be in contact and part
of an intersection.

MASK The generic line-mask; a binary
overlay of the image being processed
that retains the perceptual appear-
ance of the original “line-like” struc-
tures.

?Correct = percent of the derived road-model
that agrees with a human produced reference
model. Complete = percent of a human pro-
duced reference model included in the derived
model.

EMST A Euclidean Minimum Spanning

Tree. The tree is composed of se-
quences of 2-D points called seg-
ments; the intersection points of two
or more segments are called ver-
tices; the geometric spacing between
two successive points of a segment
are called gaps. The concatenation
of two or more segments are called
paths. The EMST is a shortest
(smallest sum of Euclidean distances)
tree spanning all the points in a given
collection.

MASK-MST A subset of the complete

Euclidean Minimum Spanning Tree
that covers the points in the MASK;
the subset is obtained by breaking
the connectivity between points of
a segment (i.e., deleting the gaps
between the detected line-points in
the MASK) that exceed some speci-
fied length, and pruning short/sparse
paths that branch off the diameter
path through the tree and the recur-
sively formed subtrees.

*rpaths* A disjoint (except for intersec-

tion points) collection of paths ex-
tracted from the subtrees that com-
prise the MASK-MST.

*road-segs* A strict subset, of the

points/paths contained in *rpaths*
that is obtained by deleting non
“road-like” paths and sub-paths.
Since no intersection information is
retained, each entry in the list *road-
segs* is formally a segment (seg)
rather than a path.

*road-segs2* A list of segments that

comprise the branches of the derived
road-graph. Nominally, a superset of
*road-segs*

*link-pairs* A data-structure that de-



fines the pairwise linking of the seg-
ments in *road-segs2*

*vertex-table* A data structure that de-
fines the derived road-graph.
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Figure 14: ALV-Image-Window; *road-segs* overlay
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Figure 16: ALV-Image-Window; *road-segs*(yellow) and added basic-SNL-links(red)



Figure 17: ALV-Image-Window; basic-SNL-linked-network-components(colored) over
*road-segs*(yellow)

Figure 18: ALV-Image-Window; *road-segs*



Figure 19: ALV-Image-Window

Figure 20: ALV-Image-Window; *road-segs2*
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Visual Similarity, Judgmental Certainty
and Stereo Correspondence *

James Ze Wang!  Martin A. Fischler!
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025

Abstract

Normal human vision is nearly infallible in modeling the visually sensed physical environment in which it
evolved. In contrast, most currently available computer vision systems fall far short of human performance in
this task, and further, they are generaily not capable of being able to assert the correctness of their judgments.
In computerized stereo matching systems, correctness of the similarity /identity-matching is almost never
guaranteed. In this paper, we explore the question of the extent to which judgments of similarity/identity
can be made essentially error-free in support of obtaining a relatively dense depth model of a natural outdoor
scene. We argue for the necessity of simultaneously producing a crude scene-specific semantic “overlay”. For
our experiments, we designed a wavelet-based stereo matching algorithm and use “classification-trees” to
create a primitive semantic overlay of the scene. A series of mutually independent filters has been designed
and implemented based on the study of different error sources. Photometric appearance, camera imaging
geometry and scene constraints are utilized in these filters. When tested on different sets of stereo images,
our system has demonstrated above 98% correctness on asserted matches. Finally, we provide a principled
basis for relatively dense depth recovery.

1 Introduction

Vision, by animals or machines, is an inductive process which results in the construction of models, or
theories, about the sensed environment. Unlike mathematical assertions, with respect to which one can
make absolute judgments about correctness (actually, only about consistency with some assumed set of
axioms), any assertion about the physical world can only be disconfirmed — never established with certainty.
Never the less, our introspection and experience assures us that normal human vision is almost infallible in
modeling the visually sensed physical environment in which we evolved and with which we directly interact.
It is almost never the case that there is a hole in our visual field where our visual system can’t produce
an instantiated model, and it is very rare that our visually produced models cause us to fail in some task
because they were incorrect. Even in the case of illusions, it is not obvious that our visually guided behavior
would suffer from the same errors our conscious introspection is subject to. (Obviously, geometric modeling
becomes less reliable as the distance from the sensor increases.)

In contrast, most currently available computer vision systems fall far short of human performance in
this task, and additionally, they make no attempt, or are generally not capable of being able to assert the
correctness of their judgments in proposing correspondences required for dense stereo depth modeling. In
computerized stereo matching systems correctness of the similarity/identity matching is almost never guar-
anteed. There are some important exceptions, especially in regard to “structure-from-motion” problems

* This work was sponsored by the Defense Advanced Research Projects Agency under contract DACA76-92-C-0008 monitored
by the U.S. Army Topographic Engineering Center, Alexandria, VA. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency, the United States Government, or SRI International. Original figures in this paper are
located at the URL: http://wuu-db.stanford.edu/~wangz/project/stereo/J00/

t Also of Department of Computer Science and Department of Medical Informatics, Stanford University, Stanford, CA 94305.
Email: vangz@cs.stanford.edu

{Email: fischler®ai.sri.com




where efforts are made to either statistically predict and verify the accuracy of the 3-D registration meth-
ods 24, 7, 20, 25, 13, 17, 21, 26] or to select correspondences from a predetermined set that are consistent
with a “rigid” spatial configuration.
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Figure 1: Natural outdoor scenes used for our experimental investigation.

Ft. Benning Kawasaki

Figure 2: Aerial imagery used for our experimental investigation.

In this paper, we explore the question of the extent to which judgments of similarity/identity (believed
to be the bias of human stereopsis) can be made essentially error-free in the context of stereo matching in
the natural outdoor world. And further, how such a (possibly sparse) set of correspondences could provide
a dense depth model.

The paper is organized as follows. In Section 2, we discuss the key problems to be addressed and our
approach to their solution. Section 3 describes our experimental environment. The details of our matching
algorithm are given in Section 4. Section 5 presents experimental results on real-world image data. Section
6 discusses the experimental results. Finally, Section 7 presents conclusions and future directions.

2 The Central Problems

Human intelligence would be relatively worthless in a non-causal world. To exploit causality, it is necessary
to be able categorize and recognize objects and events, in order to predict what will happen next or to take
appropriate action based on past experience.

In machine vision, the categorization problem is central and pervasive. In this paper we examine one of
the simplest instances of this problem — the problem of establishing stereo correspondence — and address the
key question: How can one be “certain” that a stereo match is correct.

In order to answer this question, and exploit the answer, we address the following issues: what is visual
similarity /uniqueness and how can we raeasure it; what is judgmental certainty and how can it be established;
what is the role of semantic scene understanding in judgments about stereo correspondence.

2.1 Visual Similarity

A similarity metric for assigning distinct objects membership in a classification scheme can be completely
arbitrary and is almost certain to be problem dependent. For example, we would not expect the metric used



for classifying/recognizing flaws in a printed circuit board to be the preferred metric for correctly classifying
images of trees according to species. Even when we restrict similarity judgments to the identity classes of
real 3-D world objects (the distinct objects themselves, as opposed to class membership(s) of these distinct
objects), there is a large set of alternative metrics that depend on how we define (or can acquire) our available
observations, what we mean by an object, and how we intend to use the answer. For example, if we recognize
the front and rear views of the same person in two different images, this could be useful for some purposes
but relatively worthless for geometric recovery via stereo correspondence. Thus, any meaningful discussion
of matching and the corresponding quantification of “degree of similarity” must be grounded in a specific
problem. We use stereo vision as the grounded reference for evaluating our contribution. In this regard,
we wish to understand and duplicate human stereo competence, but not necessarily the explicit mechanisms
employed by the HVS.

We note that the human visual system operates in real-time, below the conscious level, to produce a 3-D
representation of the environment. It is reasonable to assume that stereopsis is pre-attentive. This would
normally imply that it uses little or no scene-specific contextual knowledge in arriving at its instantaneous
judgments, but follows a preselected procedure (or algorithm). We will argue that effective stereo in the
outdoor world must involve scene-specific context. Thus, a solution to the problem of designing an infallible
stereo machine cannot be based solely on comparing the intensity variations in two (or more) images.

2.2 Judgmental Certainty

The problem that the HVS appears to have solved, the ability to make uniformly correct judgments in an
uncertain world, is a core problem we address in this paper. There are, essentially, only two ways of judging
when a fallible process has produced a correct answer:

1. Apply some known criterion/condition or test for correctness (that may not be competent in itself to
obtain the desired answer). In mathematics we might not know how to prove a given theorem, but we
know how to check a proof when offered one (regardless of the reliability of the source of the proof).

2. Get the opinions of a suitably sized collection of informed independent sources, and accept the proposed
solution only when there is both a sufficient consensus of agreement, and when additional criterion
for a valid model are satisfied: the additional criterion include stability (e.g., the derived model does
not change in a significant way under small perturbations of the data or the viewing conditions) and
limited model complerity (given too many free variables in a model, it can be made consistent with
any collection of data).

In this paper we focus on method (2) for establishing judgmental certainty. The application of this
approach to problems in vision requires a careful examination of what is meant by the terms informed and
independent in the vision context.

In its most fundamental sense, by independent opinions we mean that the errors made by the sources
of these opinions, with regard to some given problem, are uncorrelated.

By informed, we mean (at least) that a process is more likely than pure chance to produce a correct
answer. We will show later that an opinion can only be informed relative to some specific collection of error
types/conditions. In particular, we mast ultimately be concerned with:

e incorrect assumptions

e an incomplete model (e.g., some key variables are omitted — such as lens distortion in the context of a
perspective imaging model)

¢ incomplete set of observations/information
e incorrect observations/information

e approximations (e.g., due to the finite resolution of measuring devices, and also, the representation of
continuous numerical quantities in a machine)

e incorrect implementation (e.g., nerve damage, programming errors)




e probabilistic algorithms or a guessing strategy (errors are expected)

e an inappropriate utility function

Some of the corresponding visual phenomena include: (1) occlusion (2) ambiguity (3) distortion (4)
incorrect assumptions about (or approximations with respect to) reflectance, surface continuity, camera
geometry, illumination (5) computational errors or numerical instability in computing optical or geometric
transforms.

2.3 Three Primary Information Sources for Image-Based Scene Modeling

We consider three primary information sources for image-based geometric scene modeling: (1) the image(s):
photometric appearance and shape (2) the camera(s): imaging geometry constraints (3) the scene: scene
domain and scene-specific constraints such as physical, semantic, geometric, photometric relationships and
regularities.

2.3.1 Photometric Appearance-Based Similarity

From a statistical /signal-processing point of view, the objects of interest can be characterized using an
attribute-vector of measurements made on the objects, and we then quantify the similarity relationship
between two objects by the “normalized” distance between their attribute vectors. We note that even
correlation-based matching can be viewed in this way — here the attribute vector is the ordered set of
intensity values in the correlation patch. Never the less, it is difficult to deal with certain types of similarity
problems using this formalism. In particular, line drawings cannot be well described this way, and more
important, the local image appearance of (say) grass or other types of nearby vegetation is highly unstable
to small shifts in viewing position. While we question the adequacy of vector-space characterization as the
sole basis for natural outdoor scene stereo matching/modeling there are very few other practical alternatives
available at present.

2.3.2 Imaging-Geometry Based Constraints on Feature Matching

Advances made over the past two decades in projective geometry and robust statistical estimation (15, 5, 18,
1, 16, 12, 10], appear to provide a relatively complete basis for exploiting imaging geometry in both depth
recovery and in rejecting point correspondences that are inconsistent with the derived camera model. In this
paper, we have little to add in this area. However, we do employ projective constraints beyond those directly
associated with camera modeling. For example, We have implemented a filter that uses a plane-to-plane
linear transform to reject errors associated with semantically identified planar scene features.

And, of course, we do not wish to imply that additional advances are not needed in this area. We note
that the HVS is not completely dependent on a projective model of the imaging process — it can recover a
“qualitative” geometric model of a scene from highly distorted images.

2.3.3 Scene Based Constraints on Feature Matching

It is almost universally the case that stereo-based depth-recovery systems are designed to operate without
reference to scene semantics. In the case of the HVS, it is commonly assumed that stereopsis occurs very
early in the visual processing chain, is pre-attentive, and is based purely on some form of local matching.
Julesz [8] has shown that stereopsis can occur in the absence of any meaningful information in the individual
images of a stereo pair. Never the less, we argue in this paper that stereo depth recovery in the natural
outdoor world must invoke scene-specific semantic knowledge to create a relatively dense meaningful depth-
model. For example, in the Tenaya Lake picture (Figure 10) most of the scene is composed of either sky
or lake. The lake is especially interesting in that it can appear as a large mirror-like surface. Reflected
objects can be matched to produce a depth map which is consistent over a large number of views, but which
is incorrect. Under circumstances where the the water surface is refractive rather than reflective, we can
again form valid matches which produce incorrect depth measurements (if we make the usual assumption
that light travels in straight lines). On the other hand, if we know we are looking at a large flat body of



water, we could profit from its known planar geometry to constrain matching of objects on its immediate
boundary, and to obtain a correct depth model (via interpolation) for its surface. We can even correct for
its refractive properties if we need to estimate its depth. In the case of the sky, we might determine that it
is homogeneous, and thus not suitable for matching, without knowing what it is. However, where the sky
is visible through the tree foliage, a purely geometric system might well try to interpolate depth from the
surrounding valid matches — this works for the lake (which might also appear photometrically homogeneous)
but is obviously incorrect for sky patches. There are a large number of similar considerations (e-g., fire,
smoke, snow, insubstantial surfaces — such as grass or foliage, ...) that force one to conclude that some
form of crude semantic overlay must be available to support a depth recovery system whose results must be
reasonably complete and correct. We have previously developed techniques that could be used to compute a
suitable semantic overlay [6], but for most of the experiments described in this paper, we employed a method
based on recent work using classification-trees [2].

3 The Experimental Environment
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Figure 3: Basic structure of the current experimental system.

We assume that the images to be processed were obtained with a stereo camera configuration similar to
the HVS. Two essentially identical cameras (or a single camera) that is used to view the scene at approxi-
mately the same time from two closely spaced locations. The cameras have vertically oriented image-planes
(approximately) parallel to each other. The two images of a stereo pair should be quite similar to each other
modulo some projective and lens distortion, a horizontal shift in scene content, some differences in occluded
regions, and some intensity variation due to film processing and non-Lambertian reflective surfaces in the
scene. The currently implemented experimental configuration was intended for ground-level images of nat-
ural outdoor scenes: it was not intended to model scenes with man-made objects or aerial views. However,
we did apply it to aerial imagery and outdoor scenes with man-made objects. Figures 1 and 2 show some
of the images we have used in our experiments.

Our goal in this experimental study was not the implementation and testing of the complete stereo system
we envision, but rather to demonstrate that we can can extract a set of correct matches with a specified
maximum percentage of errors in each uncontrived stereo pair we process and then show that based on such
a sampling of “known correct” matches, and a “semantic overlay” constructed (nominally) in parallel with
the matching results, we can obtain a dense depth map that is superior to conventional (2-image) stereo
models. Some of the components and processing steps in our experimental work were chosen for convenience
and accessibility, rather than reflecting the ideal design.

In order to compare our results to existing state-of-the art stereo/matching systems, and to illustrate
the importance of the concepts proposed in our paper, we took advantage of an excellent publicly accessible



image-matching algorithm! which implements a robust technique for binocular image matching by exploiting
the epi-polar constraint. It uses correlation and relaxation methods to find an initial set of matches, and
then use the Least Median of Squares technique to discard false matches. (We realize that INRIA’s latest
developments (e.g. [17]) on stereo matching are not necessarily included in the available software.)

A pervasive problem in stereo/matching research is the evaluation of results obtained from experiments
using real images, and especially when the data is ground-level imagery of natural outdoor scenes. Some of our
earlier evaluations in this effort were based on a "manual” assessment of each asserted match-pair. Our more
recent experiments (most involving aerial imagery) exploited some new evaluation ideas and techniques {11]
which do not require the availability of “ground truth.” The basic idea is that if we can acquire three or
more calibrated images that cover the same area, and we can find a common point appearing in two or
more asserted matches (across three or more images), then a necessary condition that this set of matches
are all correct is that they all "recover” the same ground point. While in a real application we could use
the evaluation software to eliminate errors when three or more views were available, for the purposes of this
paper, we always restricted our input data to the algorithm to be a single stereo image-pair.

4 The Matching Algorithm
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Figure 4: The main steps in the matching algorithm.

The current experimental stereo configuration consists of several modules: a wavelet-based feature extrac-
tion module, a semantic analysis module, a uniqueness evaluation and matching module, a filtering module
and an interpolation module for dense depth recovery. Figure 3 shows the basic structure of the system.
Figure 4 shows the computational flow of our matching algorithm.

In this section, we provide the details of the matching algorithm. The algorithm takes two images as
input. It can also take advantage of a precomputed fundamental matrix if available.

Assume an image is specified by a set of pixels J = {(4,5),i=0,...,m-1,j=0,...,n ~ 1}. We denote
the pair of images to be matched as J; and J;. We crop and process the images so that they are of the same
size, m x n, and of roughly the same brightness. If the 3 x 3 fundamental matrix for the pair of images is
given, we denote it to be F.

4.1 Wavelet-based Feature Extraction

Various experiments (27, 22, 23] have shown that Daubechies’ wavelets 3, 4, 14, 9] are well suited for
characterizing localized information in natural signals such as sounds and images. We characterize the local
intensity information at each pixel location in each image with a vector of seven wavelet coefficients, i.e. one
low frequency coefficient and six high frequency coefficients, obtained from framed wavelet transforms.

1. Apply the Daubechies-4 wavelet filter to each row of the image. We obtain a low-pass vector of length
n and a high-pass vector of length n for each row. For each original image, we obtain two matrices
of coefficients, each having the same dimensions as the original image. We denote these matrices L3,
and Hs, for the first image, and L3, and Hj, for the second image.

L Available from INRIA at: http://www.inria.fr/robotvis/personnel/zzhang



Figure 5: A normal 3-level wavelet transform.

™

Without down-sampling, transpose the four matrices, L3,, H3,, L3, and Hj,. This step is different

from the traditional wavelet transform where a down-sampling is performed.

w

4. Without down-sampling, transpose the eight matrices. Now we get eight matrices of the same size,
m x n. Again, this step is different from the traditional wavelet transform. Figure 5 shows a normal
3-level wavelet transform. Figure 6 shows the notations.

o

6. Shift the matrices in both dimensions for 4 pixels so that the coefficients in the matrices correspond to
the actual location of the pixels in the original image. During the image matching process, we avoid

. Apply the Daubechies-4 wavelet filter to each row of the four transposed matrices. We obtain a low-
pass vector of length m and a high-pass vector of length m for each row. For each of these matrices, we
obtain two matrices of coefficients, each having the size n x m. We denote these matrices LLj,, LH,,
HLj,, and HHj,, for the first image, and LLs,, LH5,, HL3,, and HHj,, for the second image.

. Apply Step 1 to Step 4 on the matrices LL3, and LLj, to obtain an additional four matrices for each
one of them. Now we have decomposed each original image into seven matrices of distinct frequency
bands, three from previous steps and four from this step.

matching in the border area due to the boundary problem with the wavelet filtering.

[}

HL

original image

LH HH

LH HH

first level transform

second level transform

®  Feature vector components for one particular location in the image

Figure 6: Forming the feature vector.

7. For each pixel in the original images, we collect the corresponding coefficients in the seven matrices
to form a feature vector of seven dimensions. We denote these 7-dimensional vectors as Uy, (;,j) and

B3,(:.;)- Figure 6 illustrates the process.

4.2 Uniqueness Evaluation

Correct stereo matching requires an evaluation of both uniqueness and similarity. We first evaluate the
uniqueness of the wavelet descriptor at each pixel location in the image. Denote A as the matrix containing
the ambiguity scores of the pizels in the image. The size of A is m x n.

In this step, we do not restrict the search to a single epi-polar line. (Stevenson [19] has shown that human

stereo matching also is not restricted to epi-polar lines.)

If the fundamental matrix F is given, we perform the following computation.
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Figure 7: Uniqueness evaluation.

1. We exclude homogeneous regions by checking the high frequency wavelet coefficients in the feature
vectors. If the coefficients for a particular point are too small, we do not consider that point as a

match candidate.
2. Initialize the matrix A to a zero matrix.
3. Set two constants s; and s, to small values (e.g. 3-5).

4. For each pixel Jy(41,71) in the left image, use the fundamental matrix F' to find the corresponding
band of width 2s; adjacent epi-polar lines of pixels in the right image.

5. For each pixel within the band of 2s; epi-polar lines, denoted as J;(iz, j2), compute the Euclidean
distance between the feature vectors Vs, ;, j;) and By, (i, j,). Denote the distance as d(i1, j1; i2, j2)-

6. Sort the distances d(i,j1;15,j5), where (i5,j3) run over all the pixels in the band of 2s; adjacent
epi-polar lines. Find the closest match to J;(i1,71) and denote it as J; (32,J2) - That is, d(i1, j1; 42, J2)
is the minimum over all d’s. We call the pair of points as a conjugate pair.

7. For all pixels Jz(i}, 75) in the second image such that (i — i2) + (j5 — j2)* < s2%, we compute the
maximum d(iz, j2; 15, j3). Denote the maximum as ;.

8. For all pixels J5(i}, j3) in the pixel band in the second image such that (i — i2)? + (j; — j2)* > 892, if
d(i1, j1; 15, 75) < t2 holds, we discard the match. Otherwise,

1
A, ) = AGL, 1)+ 55—+ -
( ! ]1) ( ! ]1) d(11311;7'121]é)
9. For all pixels 3; (¢!, j;) in the first image so that (i —i1)? + (j{ —j1) < 82, we compute the maximum
d(i1,71;41,71). Denote the maximum as ¢;.

10. For all pixels Ja(i}, ) in the pixel band in the first image such that (i} —i1)? + (ji — §1)? > 852, if
d(i}, j1;12,j2) < t1 holds, we discard the match. Otherwise,

. . 1
Alir 1) = Alin,u) + d(iy,ji382,J2)

We note that ¢, and ¢, are computed thresholds on acceptable uniqueness. Figure 7 shows that the
regions around the conjugate pair are excluded for the uniqueness evaluation. If the fundamental matrix F'
is not given as an input, we use a band of 2s; rows of pixel around the point in the first image to determine
the uniqueness of the point.

We now have an ambiguity score matrix A for the image pair. During the matching phase, we require
that the components of a match pair is not only similar but also unique.



4.3 Initial Matching

In this part of the process, we try to find a list of about N conjugate pairs that satisfy criteria for both
uniqueness and similarity. For our applications, we set N to a (nominal) value of 300.
If the fundamental matrix F is given, we perform the following procedure.

1. Without considering the homogeneous regions, sort values in the ambiguity matrix A.
2. Set1—c.

3. If ¢ > N, terminate.

4

. For each pixel in the left image with the next smallest ambiguity score in A, denoted as 31 (i1, 41),
compute the global ambiguity score over the entire right image.

5. If the global ambiguity score is smaller than a threshold determined similar to t2, we use the Euclidean
distance between the feature vectors s, (i, j,) and D, ;1) to find a best match within the adjacent

25, epi-polar lines in the right image. Denote the match as Ja (32, j2)-

6. Use the Euclidean distance between U3, (i1 ;1) and By, (i,,5,) to find a best match within the adjacent
2s; epi-polar lines in the left image. Denote it J1 (i3, 73)-

7. f i3 — 43 > 1 or j3 — j1 > 1, we discard the match.

8. Find the best match of J;(i1, 1), denoted T (44, j4), within the entire two images except the neigh-
borhoods of the points J; (i1, 1) and Ja(iz, j2). Denote the Euclidean distance between J; (1,71) and

Ji(is,Ja) as dy.

9. Find the best match of J2(i2,j2), denoted J1(is, j5), within the entire two images except the neigh-
borhoods of the points J; (i1, j1) and J2(iz, j2). Denote the Euclidean distance between J; (41,1) and

Ju(is, js) as da.

10. If d(il,jl;iz,jz) < d; and d(il,jl;iz,jz) < dy, accept the match jl(il,j]_) and jz(iz,jz) as a valid
conjugate pair for the initial matching stage. Otherwise, discard the match.

11. Set ¢+ 1 — ¢. Go to Step 3.

We have now obtained on the order of 300 conjugate pairs, where each pair satisfies the following condition:
each member of a pair has only one other potential match in the set of unique points, and this single match
is its conjugate in the other image.

If the fundamental matrix F is not given as an input, we use a band of 2s; rows of pixel around the point
in the images for the computation.

4.4 Semantic Overlay Filtering

If the scene is a ground-level natural out-dvor scene, we create a rough semantics overlay to eliminate matches
in regions (e.g. sky and water) where we have little confidence of finding correct conjugate pairs. If the scene
is not a natural out-door scene, we skip this filter step.

We derive a rough semantic overlay of each image of the stereo pair. For most of the experiments discussed
in this paper, we use training samples from a few scenes similar (but distinct) from the experimental scenes
to create a decision tree structure using the classification and regression trees (CART) algorithms [2]. CART,
developed by Breiman et al., has been widely used in computer-aided clinical diagnosis research. Figure 8
shows the structure of a classification tree generated by the CART algorithm.

In our experiments, we used a sequence of seven training images representing sky, stone, river/lake, grass
and tree/forest. Figure 9 shows five of the seven training images. We use the mean colors and variances of
4 x 4 blocks in RGB color space as the components of the training feature vector. These features are simple
but appear capable of distinguishing the above five classes. For gray scale images, we use only the mean
intensity and variance of 4 x 4 blocks as the components of the training feature vector.
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Figure 8: Generating a classification tree using the CART algorithm.

stone river/lake grass tree/forest

Figure 9: Training color images used for creating the semantic overlay.

color image semantic overlay color tmage semantic overlay

Figure 10: Semantic analysis of outdoor scenes using the classification and regression trees
(CART) algorithm. No post-processing is performed. Color scheme: Deep blue for sky, yellow for stone,
light blue for river/lake, light green for grass, deep green for tree/forest.
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It takes about one minute on a Pentium PC to create the classification tree structure. After the classifi-
cation tree is created, it takes only a few seconds to classify a given image to create the semantic overlay for
a color image of 768 x 512 pixels. Figure 10 and 11 show the classification results on color and gray-scale im-
ages®. Each of the five different classes is given a unique “pseudo” color in the final result. The classification
results are satisfactory for our application.

gray-scale image  semantic overlay gray-scale image semantic overlay

Figure 11: Semantic analysis of outdoor scenes using the classification and regression trees
(CART) algorithm. No post-processing is performed. Color scheme: Deep blue for sky, light blue for
river/lake, light green for grass, deep green for tree/forest, white for non-classified regions.

For stereo matching purposes, we exclude regions classified as sky and water because feature-based
matching in these regions is not reliable. We can obtain dense stereo matching in the water region by
interpolation based on more reliable stereo matches bounding such regions.

SRI program : 279 matches, 1 error INRIA’s algorithm : 35 matches, 2 errors

Figure 12: Matching result using our program vs. INRIA’s image-matching algorithm. Dark points
are the matches found. Lines shown are the disparity vectors. Our system found 279 matches including 1
mismatch (marked with white lines). INRIA’s system found 35 matches including 2 mismatches.

4.5 Geometric and Appearance Based Filtering

We next compute the fundamental matrix [12] that models the imaging geometry between the two images
of the stereo pair and eliminate all conjugate pairs that fail to satisfy the epi-polar “rigidity” condition.
Since we nominally assume that we know the internal camera parameters (as needed to fully exploit the
semantic overlay), in an ideal system we would replace the epi-polar constraint with the more comprehensive
collinearity constraint [13] to do the rigidity checking. We then further filter the surviving pairs on the basis
of additional constraints derived from assumptions about scene geometry affecting two or more conjugate
pairs.

4.6 Occlusion Boundary Filtering

In this step, we eliminate matches on possible occlusion boundaries to avoid matching “psuedo features”
composed of both foreground and background components. The procedure is based on the assumption that

2The original color figures can be accessed through the WWW at:
http://www-db.stanford.edu/~wangz/project/stereo/J00/
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INRIA’s algorithm : 80 matches, 0 errors

Figure 13: Matching result using our program vs. INRIA’s image-matching algorithm. Dark
points are the matches found. Lines shown are the disparity vectors.

the intensity differences between corresponding points surrounding a given point on an occlusion boundary
is less random than the differences surrounding a given point on a continuous surface.
Assume the match J; (i1, 1) and Ja(i2, j2) is to be checked. The procedure is as follows:

1. As indicated in Figure 16, we partition the surrounding 16 x 16 pixel block of a match point into 4 x 4
sub-blocks.

2. Threshold the 16 x 16 block of intensity value differences between the first image and the second image
to obtain a binary “difference block”, denoted as By. The threshold is determined adaptively for each
difference block to maintain about fifty percent ones in the 16 x 16 block. The threshold is typically
around 12 for an 8-bit image.

3. Denote the 4 x 4 sub-blocks as B; ;, where 1 =1,2,3,4 and j = 1,2,3,4. Let

summation within B; ;

Pij = : 1
I summation within By

4. If x* = i (’"—’;—fﬁﬁ is larger than a threshold 0.15, we discard the match pair.
' 16

Here we use the equivalent of a Chi-square test to evaluate the hypothesis that the intensity differences
in the 16 x 16 block are uniformly distributed. The two thresholds currently used were determined based on
experiments on real data. If the first threshold was chosen to produce 50% ones, then the Chi-square test
with 15 degrees of freedom and a rejc:tion threshold of 0.15 x 128 = 18.2 would result in a 25% probability
of rejecting a valid match.

Figure 15 shows the performance of the occlusion boundary filter. We inserted an artificial occlusion
boundary in each member of a pair of ground-level images. INRIA’s program asserted some incorrect
matches on the occlusion boundary. Our program eliminated all potential matches on the inserted occlusion
boundary.

12



INRIA’s algorithm : 50 matches, 10 errors within the lake

Figure 14: Matching result using our program vs. INRIA’s image-matching algorithm. Dark
points are the matches found. Lines shown are the disparity vectors.

4.7 Mahalanobis Distance Filtering

For each semantic label (separately) we use the surviving pairs and their wavelet-based feature vectors to
compute a 7 x 7 covariance matrix and then rank the remaining pairs on the basis of the Mahalanobis
distance between members of the each conjugate pair. Based on the assumption that the differences between
the wavelet characterizations of the members of a correctly associated conjugate pair can be approximated
by a Gaussian process, we could set a threshold based on the Chi-squared distribution that allows us to
eliminate any matches that have a probability of greater than (approximately) 2% of being in error. (The
squared Mahalanobis distance has a Chi-squared distribution under the Gaussian assumption.) What if the
Gaussian assumption does not hold?? We have found that the Mahalanobis distance consistently produces
an acceptable ordering of the image points with respect to uniqueness for the class of natural scenes we are
concerned with and it is possible to select a fixed threshold that virtually eliminates all but a very small
percentage of errors — experimentally found to be less than 2 percent — while still returning on the order of
1-2 “certified correct” points per scan-line.

4.8 Dense-Modeling/Interpolation

The semantic overlay, certified correct matches, and computed epi-polar geometry, allow us to partition the
images into subregions which are recursively processed by the above strategy.

The recursive search in this step is limited to the set of pixels surrounding the corresponding epi-polar
lines in each of the two images. Figure 18 illustrates the pixels to be examined in this step.

Since each subregion has fewer points to cause mismatches, we obtain additional (nominally) correct
matches and thus the final number of conjugate pairs use to construct the 3-D scene model, while a function
of scene content (e.g., the extent of the sky region), is not constrained by the size of our initial set of certified
conjugate points. Dense modeling of depth is based on the assured correct matches and the semantic overlay
to provide an informed basis for interpolation.

13
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106 matches eliminated by the occlusion boundary filter (**)

Figure 15: Performance of the occlusion boundary filter. (*) A match near but outside the boundary
of the inserted artificial foreground object is considered an error. (**) Of the 106 matches eliminated, 10
matches are near but outside the boundary of the inserted artificial foreground object.

Figure 16: Partition the 16 x 16 pixel block surrounding a match point into 4 x 4 sub-blocks for
the occlusion boundary filtering.

14
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Figure 17: Results from the recursive dense depth recovering process using our program. The
disparity image is shown. White regions are the no-match regions. No interpolation has been performed.

Figure 18: Pixels surrounding the corresponding epi-polar line in each of the images are searched
for final dense matching.
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At present, we have focused on sky and water constraints in exploiting the semantic overlay. Obviously,
the sky regions are not assigned any finite depth value - they serve mainly to prevent the formation of
incorrect correspondences or interpolation. It can easily be shown that for the imaging configuration we are
assuming (known internal camera parameters and horizontal principal ray, we can estimate the elevation of a
horizontal surface (e.g. a lake) relative to the focal point of the camera from a single correct correspondence
of a point on or adjacent to the horizontal lake surface; and the distance to any point on the surface or surface-
level boundary of the lake can then also be directly computed without any additional correspondences.

5 Experimental Results

INRIA’s algorithm : 50 matches, 10 errors

Figure 19: Matching result using our program vs. INRIA’s image-matching algorithm. Dark
points are the matches found. Lines shown are the disparity vectors.

The system has been implemented using C on a Pentium III LINIX PC. Figures 12, 13, 17, 14, 19 and
21 show sample matching results obtained using our system compared with using INRIA’s image-matching
algorithm.

We have performed a series of more than 100 experiments. For the ground-level natural outdoor scenes,
we visualize the disparity maps to determine obvious errors (i.e., matches at least a few pixels away from the
true match). For the aerial imagery, we use the SCT (self-consistency test) system [11] developed by SRL
Table 1 summarizes the data sets we have used. Figure 20 shows the cumulative distribution functions of
errors, obtained from the SCT system. Our system was not intended to provide sub-pixel accuracy matching
data.

6 Discussion

What conclusions can we draw from the experiments? Both the SRI and INRIA algorithms made almost
no errors in the “Lambertian regions” of the three test scenes, but the filtering efficiency (retention of

16
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Figure 20: Self-consistency test (SCT) results using the SRI program.

Figure 21: Matching result using our program vs. INRIA’s image-matching algorithm. Dark
points are the matches found. Lines shown are the disparity vectors.
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Location Stanford Stanford Stanford Yosemite Ft. Benning  Kawasaki
Main Quad Hill Trees Lake
# of Images 2 2 2 2 18 x 6 (**) 6 x 6 (**)
Image Dimensions 204 x 445 512 x 768 233 x 256 294 x 447 400 x 400 450 x 450
(rows x cols)
Externally F F F F, S F F
Supplied Data

Acquisition
Geometry
Type ground ground ground ground air air
Nominal 2m 2m lm 3m N/A N/A

Camera-baseline
Nominal Range 15-60 60-100 0-20 20-50 0-30 0-30

in Disparity pixels pixels pixels pixels pixels pixels
Ground Surface

Resolution N/A N/A N/A N/A 0.30 0.50
(meters/pixel)

Performance of
the SRI System

# of Conjugate 295 300 285 289 240-300 (*) 240-280 (*)
Pairs Returned
Valid Matches > 99% > 99% > 99% > 99% > 99% > 98%
Gross Errors < 1% <1% <1% < 1% <1% < 2%
Self N/A N/A N/A N/A 100% within  100% within
Consistency 2 pixels 2 pixels

Performance of
the INRIA System

# of Conjugate 50 80 50 50 80 70

Pairs Returned

Valid Matches > 80% > 99% > 90% > 80% > 99% > 98%
Gross Errors < 20% < 1% < 10% < 20% < 1% < 2%

Table 1: Performance comparison of the SRI system and the INRIA system. F: fundamental
matrices. S: semantic overlay computed. (*) The SRI system did not find more than 100 matches in some
cases. (**) number of sets x number of images in a set. Lenses with 50mm focal length and 35mm film
format were used for ground level scenes.
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Occlusion

Specular Surface (lake)

Repeated Structure

Figure 22: Typical mismatches that we are trying to eliminate. Bright points are the mismatches
eliminated by our filters.

correct correspondences for an essentially zero error rate) was much higher for the SRI algorithm. Thus our
ability to create a complete and valid depth model, even for the “normal” regions of the natural scenes, was
significantly greater. In the case of the sky regions, both algorithms did well, but for the water there were
significant differences. Here, as expected, without the semantic overlay, the INRIA algorithm had a high
error rate — on the order of 20 percent of the returned matches.

We believe that the key to high efficiency in the filtering step is to have an initial collection of error-
free matches to be used to construct the covariance matrix and thus also the rank ordering of the points
with respect to expectation of a correct match. To the extent that incorrect correspondences are included,
the correctness ordering (Mahalanobis distance) is “noisy” and a threshold chosen to eliminate almost all
errors will be forced to also eliminate many correct correspondences. Thus, by preventing the sky and water
regions from producing any correspondences, we improve the efficiency of the filters, even for parts of the
scene outside of the sky and water regions. This explains why we were willing to pay a high computational
price for the uniqueness computation in addition to the construction of the semantic overlay.

The uniqueness ranking that we assign to each conjugate pair is based on “all” the information present in
both images. We assume that an ambiguity condition detected far from the original point in the containing
image, or far from the associated epi-polar line in the conjugate image, still suggests an increased probability
of an undetected mismatch (e.g., due to occlusion so that only one close but incorrect match is found on the
correct epi-polar line itself) — we have found many examples where this is indeed the case (see Figure 22).

We assume that the only valid basis for certainty judgments is the consensus of informed independent
opinions. Photometric measures based on different characterizations of the image intensity pattern are not
likely to be truly independent. Constraints from the nature of the imaging process add additional necessary,
but not sufficient criteria for a correct match. Thus, the other available information sources, especially
constraints based on semantics, physical laws, and known or assumed scene geometry must be invoked if we
are to have any hope of duplicating the performance of human stereopsis.

Stereo modeling of a natural scene requires a parallel (primitive) semantic overlay to provide a basis
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for informed interpolation. This observation and its implications are central to our approach and a major
departure from related work on this subject.

7 Conclusions and Future Work

In this paper, we addressed two related problems. First, we have explored the question of the extent to which
judgments of similarity/identity can be made essentially “error-free.” Most current approaches to robust
matching focus on obtaining a consistent geometric model under a highly simplified set of assumptions about
the imaging process and world being modeled. In the natural outdoor world, consistency is not sufficient;
even a valid match does not insure correct depth recovery (e.g., the Tenaya-lake example). In the two image
case, camera geometry constraints can, at best, restrict matching to epi-polar lines; at this point conventional
systems usually rely on some form of local appearance matching and statistical arguments to complete the
construction of the depth model. We show examples from non-contrived images where the statistics are valid
but the matching is still incorrect. We argue that the HVS does not make these mistakes because it uses
scene semantics as an additional, and more powerful, constraint on potential matches.

Second, we have examined the requirements for “human-level” stereo modeling in the natural outdoor
world. Avoiding matching errors is only half the job: we can eliminate all the errors by eliminating all
the matches. Consistency and statistical decision theory are not a sufficient basis for obtaining a relatively
complete model when a significant portion of the scene content is “unmatchable” (i.e., when such matching is
based strictly on intensity variations in the imagery). Interpolation into the unmatched regions can only be
accomplished in a principled way if a semantic constraints are invoked and if semantic modeling accompanies
geometric recovery.

Since the matching problem is “open-ended,” this paper is still work-in-progress. We are attempting to
better define the requirements of the semantic overlay, to make its automatic construction more robust, and
to use it more effectively in the stereo matching process.
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